Answer:
Option D is the correct answer.
Explanation:
Stress is the force per unit area that tend to change the shape of body.
Stress is defined as internal resistive force per unit area.


So, so stress distributed over an area is best described as internal resistive force.
Option D is the correct answer.
<u>Answer:</u>
total mass = 410 g
<u>Explanation:</u>
density = 1.8 g/cm³
volume = 200 cm³
density = mass / volume
mass (of liquid) = density x volume
= 1.8 x 200
= 360 g
total mass (beaker + liquid) = 50 + 360 = 410 g [Ans]
Hope this helps!
Answer:
As a result, light travels fastest in empty space, and travels slowest in solids. In glass, for example, light travels about 197,000 km/s.
Explanation:
Answer:
6.29 meters.
Explanation:
, where v is the speed of wave and f is the frequency of wave.
We are given that ,
The speed of sound is 346 m/s.
i..e v=346 m/s
A sound wave travels at a frequency of 55 H.
i..e f=55
the wavelength would be 6.29 meters.
This is based on another brainly answer
Link: brainly.com/question/12538018
Answer:
a) ![(Qa*g*Vb)-(Qh*Vb*g)=(Qh*Vb*a)\\where \\g=gravity [m/s^2]\\a=acceleration [m/s^2]](https://tex.z-dn.net/?f=%28Qa%2Ag%2AVb%29-%28Qh%2AVb%2Ag%29%3D%28Qh%2AVb%2Aa%29%5C%5Cwhere%20%5C%5Cg%3Dgravity%20%5Bm%2Fs%5E2%5D%5C%5Ca%3Dacceleration%20%5Bm%2Fs%5E2%5D)
b) a = 19.61[m/s^2]
Explanation:
The total mass of the balloon is:
![massball=densityheli*volumeheli\\\\massball=0.41 [kg/m^3]*0.048[m^3]\\massball=0.01968[kg]\\\\](https://tex.z-dn.net/?f=massball%3Ddensityheli%2Avolumeheli%5C%5C%5C%5Cmassball%3D0.41%20%5Bkg%2Fm%5E3%5D%2A0.048%5Bm%5E3%5D%5C%5Cmassball%3D0.01968%5Bkg%5D%5C%5C%5C%5C)
The buoyancy force acting on the balloon is:
![Fb=densityair*gravity*volumeball\\Fb=1.23[kg/m^3]*9.81[m/s^2]*0.048[m^3]\\Fb=0.579[N]](https://tex.z-dn.net/?f=Fb%3Ddensityair%2Agravity%2Avolumeball%5C%5CFb%3D1.23%5Bkg%2Fm%5E3%5D%2A9.81%5Bm%2Fs%5E2%5D%2A0.048%5Bm%5E3%5D%5C%5CFb%3D0.579%5BN%5D)
Now we need to make a free body diagram where we can see the forces that are acting over the balloon and determinate the acceleration.
In the attached image we can see the free body diagram and the equation deducted by Newton's second law