Planets revolve around the sun because of gravity. When the planets were made, the sun's gravity was strong enough so that the planets continued to stay around the sun and orbit.
The decomposition of so3 to so2 gas and o2 gas can be described in the balanced chemical equation:
2so3(g) = 2 so2 (g) + 02(g).
so assuming a complete reaction, the ratio of so2 gas to total products is 2/3 while that of 02 is 1/3.
Subtracting water's water vapor pressure, 760-40 mm hG = 720 mm Hg.
then the products partial pressures are
so2 = 2/3 * (720) = 480 mm Hg.
o2 = 720-480 = 240 mm Hg.
Hey there!
In order to solve for the percentage of water in the compound, you will first need to find its total molar mass. You can do this by adding up the molar masses of each individual element in the compound. Then, you will divide the mass that you find of the water molecules by the total mass to get the percentage.
→ Na₂CO₃ ×<span> 10 H</span>₂<span>O
</span>→ Na₂ = 22.9898 × 2 = 45.9796
→ C = 12.0107
→ O₃ = 15.999 × 3 = 47.997
→ 10 H₂O = 18.015 × 10 = 180.15
Now, just add all of those numbers up for the total molar mass.
→ 45.9796 + 12.0107 + 47.997 + 180.15 = <span>286.1373
</span>
The last step is to divide the molar mass of the 10 water molecules by the total mass.
→ 180.15 ÷ 286.1373 = <span>0.62959 </span>≈ 0.63
Your answer will be about 63%.
Hope this helped you out! :-)
The answer is ( The concentrations of the products and reactants do not change.)
Answer: Temperature and number of moles are the conditions which remain constant in Boyle's law.
Explanation:
Boyle's law states that at constant temperature the pressure of a gas is inversely proportional to the volume of gas.
Mathematically, it is represented as follows.
As equation for ideal gas is as follows.
PV = nRT
And, at constant temperature the pressure is inversely proportional to volume which also means that number of moles are also constant in Boyle's law.
Thus, we can conclude that temperature and number of moles are the conditions which remain constant in Boyle's law.