Answer:
The mass of water
= 39.18 gm
Explanation:
Mass of iron
= 32.5 gm
Initial temperature of iron
= 22.4°c = 295.4 K
Specific heat of iron
= 0.448 
Mass of water =
Specific heat of water 
Initial temperature of water
= 336 K
Final temperature after equilibrium
= 59.7°c = 332.7 K
When iron rod is submerged into water then
Heat lost by water = Heat gain by iron rod
(
-
) =
(
-
)
Put all the values in above formula we get
× 4.2 × ( 336 - 332.7 ) = 32.5 × 0.448 × ( 332.7 - 295.4 )
= 39.18 gm
Therefore the mass of water
= 39.18 gm
Answer:
Explanation:
I think you meant a covalent bond, a bond between two non-metal atoms. This image can explain better than I can.
Answer:
An egg will be your ans because it needs to be broken before we can cook it or use it for making other delicases
Explanation:
<em><u>Hope </u></em><em><u>it </u></em><em><u>helps </u></em>
Answer:
Think it's NC13
Explanation:
It's the only one missing in the molecule
Energy absorbed by Iron block E (iron) = 460.5 J
Energy absorbed by Copper block E (Copper) = 376.8 J
<u>Explanation:</u>
To find the heat absorbed, we can use the formula as,
q = m c ΔT
Here, Mass = m = 10 g = 0.01 kg
ΔT = change in temperature = 400 - 300 = 100 K = 100 - 273 = -173 °C
c = specific heat capacity
c for iron = 460.5 J/kg K
c for copper = 376.8 J/kg K
Plugin the values in the above equation, we will get,
q (iron) = 0.01 kg × 460.5 J/kg K × 100 K
= 460.5 J
q (copper) = 0.01 kg × 376.8 J/kg K × 100 K
= 376.8 J