Answer:
Distance, d = 192 meters
Explanation:
We have,
Initial velocity of an object is 10 m/s
Acceleration of the object is 3.5 m/s²
Time, t = 8 s
We need to find the distance travelled by the object during that time. Second equation of motion gives the distance travelled by the object. It is given by :


So, the distance travelled by the object is 192 meters.
It'll be 152 Hz at the exact instant the bumblebee
is right at the tip of your nose, on his way past you.
Before he gets there, while he's coming at you,
he sounds like a frequency higher than 152 Hz.
After he passes by, and is going away from you,
he sounds like a frequency lower than 152 Hz.
Third
every action has an opposite and equal reaction
<em>Answer:</em>
<h3><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em>True</em></h3>
- <em>Because </em><em>Gravity is the force of attraction between two objects, and Earth's gravity pulls matter downward, toward its center. It pulls precipitation down from clouds and pulls water downhill. Gravity also moves air and ocean water. ... Gravity pulls denser air and water downward, forcing less dense air and water to move upward.</em>
<em>Carryonlearning</em>