Answer is: concentration of hydrogenium ions is 9,54·10⁻⁵ M.
c(HNO₂) = 0,075 M.
c(NaNO₂) = 0,035 M.
Ka(HNO₂) = 4,5·10⁻⁵.
This is buffer solution, so use <span>Henderson–Hasselbalch equation:
pH = pKa + log(c(</span>NaNO₂) ÷ c(HNO₂)).
pH = -log(4,5·10⁻⁵) + log(0,035 M ÷ 0,075 M).
pH = 4,35 - 0,33.
pH = 4,02.
<span>[H</span>₃O⁺] = 10∧(-4,02).
<span>[H</span>₃O⁺] = 0,0000954 M = 9,54·10⁻⁵ M.
Answer:
The correct answer is "Electrons are transferred in an ionic bond"
Explanation:
The covalent bond is the chemical bond between atoms where electrons are shared, forming a molecule. Covalent bonds are established between non-metallic elements, such as hydrogen H, oxygen O and chlorine Cl. These elements have many electrons in their outermost level (valence electrons) and have a tendency to gain electrons to acquire the stability of the electronic structure of noble gas. The shared electron pair is common to the two atoms and holds them together.
An ionic bond is produced between metallic and non-metallic atoms, where electrons are completely transferred from one atom to another. During this process, one atom loses electrons and another one gains them, forming ions. Usually, the metal gives up its electrons forming a cation to the nonmetal element, which forms an anion.
In conclusion, chemical bonds are made so that atoms can have their entire outer layer, and thus have a stable electronic configuration. In the ionic bond, when the metallic atom has only one electron in its outer layer and the non-metallic one needs an electron to complete its layer; The metallic atom seats its electron to the non-metallic one. In the same way, the electron is shared in the covalent bond in order to achieve equilibrium.
Then, the main differences between the two bonds are that the ionic bond occurs between two different atoms (metallic and non-metallic), while the covalent bond occurs between two equal atoms (non-metallic). And in the covalent bond there is an electron compartment, while in the ionic bond there is an electron transfer.
So, the correct answer is "Electrons are transferred in an ionic bond"
A saturated solution is one in which no more solute is able to dissolve in a given solvent at a particular temperature. Some amount of the solute is left undissolved in the solution.
Unsaturated solution has solute in lower proportions than required to form a saturated solution.
Supersaturated solution has solute in amounts greater than a saturated solution.
We can take the help of solubility curve in order to find out the amount of a salt required to prepare a saturated solution of that salt at a particular temperature.
The solubility of KI at 10
is 136 g/ 100 mL water
The solubility of
at
is 21 g/100 mL water.
The solubility of
at
is 80 g/100 mL water.
The solubility of NaCl at
is 38 g/ 100 mL water.
So the correct answer will be KI, as it would need 136 g KI / 100 mL water to form a saturated solution at
.So, if we have 80g KI/ 100mL water it would be an unsaturated solution.
<u>Answer:</u> 3 neutrons are produced in the above nuclear reaction.
<u>Explanation:</u>
In a nuclear reaction, the total mass and total atomic number remains the same.
The nuclear reaction for the fission of Americium-244 isotope follows:

<u>To calculate Y:</u>
Total mass on reactant side = total mass on product side

Hence, 3 neutrons are produced in the above nuclear reaction.
I am not 100% sure but I think it is circulation/orbitiation.