Answer: 27.09 ppm and 0.003 %.
First, <u>for air pollutants, ppm refers to parts of steam or gas per million parts of contaminated air, which can be expressed as cm³ / m³. </u>Therefore, we must find the volume of CO that represents 35 mg of this gas at a temperature of -30 ° C and a pressure of 0.92 atm.
Note: we consider 35 mg since this is the acceptable hourly average concentration of CO per cubic meter m³ of contaminated air established in the "National Ambient Air Quality Objectives". The volume of these 35 mg of gas will change according to the atmospheric conditions in which they are.
So, according to the <em>law of ideal gases,</em>
PV = nRT
where P, V, n and T are the pressure, volume, moles and temperature of the gas in question while R is the constant gas (0.082057 atm L / mol K)
The moles of CO will be,
n = 35 mg x
x
→ n = 0.00125 mol
We clear V from the equation and substitute P = 0.92 atm and
T = -30 ° C + 273.15 K = 243.15 K
V = 
→ V = 0.0271 L
As 1000 cm³ = 1 L then,
V = 0.0271 L x
= 27.09 cm³
<u>Then the acceptable concentration </u><u>c</u><u> of CO in ppm is,</u>
c = 27 cm³ / m³ = 27 ppm
<u>To express this concentration in percent by volume </u>we must consider that 1 000 000 cm³ = 1 m³ to convert 27.09 cm³ in m³ and multiply the result by 100%:
c = 27.09
x
x 100%
c = 0.003 %
So, <u>the acceptable concentration of CO if the temperature is -30 °C and pressure is 0.92 atm in ppm and as a percent by volume is </u>27.09 ppm and 0.003 %.
The minimum energy required to excite a hydrogen atom from its lowest energy level is 10.2 eV.
<h3>What is excitation?</h3>
The term excitation has to do with the promotion of an electron from a lower to a higher energy level.
In this case, we are dealing with the hydrogen atom having only one electron. Thus, the minimum energy required to excite a hydrogen atom from its lowest energy level is 10.2 eV.
Learn more about energy level:brainly.com/question/17396431
#SPJ1
Answer:
The final volume of the cylinder is 1.67 L
Explanation:
Step 1: Data given
Initial volume = 0.250 L
external pressure = 2.00 atm
Expansion does 288 J of work on the surroundings
Step 2: Definition of reversible work:
Wrev = -P(V2-V1) = -288 J
The gas did work, so V2>V1 (volume expands) and the work has a negative sign.(Wrev<0)
V2 = (-Wrev/P) + V1
⇒ with Wrev = reverse work (in J)
⇒ with P = the external pressure (in atm)
⇒ with V1 = the initial volume
We can see that your pressure is in atm and energy in J
To convert from J to L * atm we should use a convenient conversion unit using the universal gas constants :
R
=
8.314472 J/mol
*K and R= 0.08206 L*atm/K*mol
V2 =- (-288 J * (0.08206 L*atm/K*mol /8.314 J/mol
*K))/2.00 atm + 0.250L
V2 = 1.67 L
The final volume of the cylinder is 1.67 L
It indicates that there is only one oxygen molecule