If you are pushing the coin across the table at a constant rate, the friction of the table and the horizontal force of your hand pushing are equal, and the coin itself moves at a constant rate. If you push a coin and let it go, there is no horizontal force keeping the coin going. Friction slows the coin to a stop. In both cases, the gravitational downward pull of Earth is equally but oppositely resisted by the upward push of table on the coin.
Answer:
fo = 378.52Hz
Explanation:
Using Doppler effect formula:
where
f' = 392 Hz
C = 340m/s
Vb = 20m/s
Va = 31m/s
Replacing these values and solving for fo:
fo = 378.52Hz
When two or more waves meet, they interact with each other. The interaction of waves with other waves is called wave interference. Wave interference may occur when two waves that are traveling in opposite directions meet. The two waves pass through each other, and this affects their amplitude.
This is a power problem which requires the rearranging of a formula. The lamps energy used is 5 N, and the TV’s usage is 116.7 N (rounded from 116.6666repeating). Here my work:
The intensity of the light has no connection with the photoelectric effect.
That's what was so baffling about it before the particle nature of light
was suspected ... a match with a blue flame might stimulate the
photoelectric effect, but a high-power red searchlight couldn't do it.