Answer:
The output power the weightlifter is 2916.67 W.
Explanation:
Given;
weight lifted, W = 700 N
height the weight is lifted, h = 2.5 m
time taken to lift the weight, t = 0.60 s
The output power the weightlifter is calculated as;
Power = Energy applied / time taken
Energy applied = weight lifted x height the weight is lifted
Energy applied = 700 x 2.5
Energy applied = 1750 J
Power = 1750 / 0.6
Power = 2916.67 J/s = 2916.67 W.
Therefore, the output power the weightlifter is 2916.67 W.
Answer:
The frequency of the piano string is <em>1059 Hz</em>.
Explanation:
The frequency beat (fb), 2 beats/second, is the absolute difference between the frequency of the tuning fork (1056 Hz) and the frequency of the piano string.
As the piano string gets tightened, the frequency beat becomes 3 beats/second.
Therefore,
fb = 
Answer:
You will need 450 cells (3 cm each) to meet the voltage/current requirement.
The panel must be 3 cells in one side, by 150 cell in another side. 1350 cm^2 or 0.135 m^2. They must be connected 3 in row in parallel (to add current), then each of the former group must be connected in series to meet the voltage, so it would be 150 rows of connected in series.
The panel can be optimized using a voltage inverter, to convert current to voltage. In this way, less cells can be used achieving the same output specs.
Explanation:
To meet the voltage:
120 [v] required voltage
0.8 [v] voltage of each cell
![\frac{120}{0.8} =150[v]\\](https://tex.z-dn.net/?f=%5Cfrac%7B120%7D%7B0.8%7D%20%3D150%5Bv%5D%5C%5C)
So we need 150 cells in series for the voltage.
To meet the current
1.0 [A] Required current
350[mA]=0.35[A] cell current
1/0.35=3 cell So we need 3 cells in parallel to add the currents and meet the requirement.
See the attached figure
Answer:
h =220 m
Explanation:
Given that
u = 7 m/s
Even mass will attach but this will not produce any effect on the maximum height of the ball.Because in energy conservation the effect of mass does not present.
So the final speed of the ball will be zero at the maximum height.
v² = u² - 2 g (25 + h)
0 = 7² - 2 x 10 (25 +h)
49 = 20 ( 25 +h)
49 = 500 +20 h
Here h comes out negative that is why we are taking the 70 m/s in place of 7 m/s.
0 = 70² - 2 x 10 (25 +h) ( take g =10 m/s²)
4900 = 20 ( 25 +h)
4900 = 500 +20 h
4900- 500 = 20 h
4400 = 20 h
440 = 2 h
h =220 m
Answer:
materials which exhibit a spontaneous net magnetization at the atomic level, even in the absence of an external magnetic field.
Explanation:
When a material is placed within a magnetic field, the magnetic forces of the material's electrons will be affected. This effect is known as Faraday's Law of Magnetic Induction. However, materials can react quite differently to the presence of an external magnetic field. This reaction is dependent on a number of factors, such as the atomic and molecular structure of the material, and the net magnetic field associated with the atoms. The magnetic moments associated with atoms have three origins. These are the electron motion, the change in motion caused by an external magnetic field, and the spin of the electrons.