1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
rjkz [21]
3 years ago
15

A storage tank, used in a fermentation process, is to be rotationally molded from polyethylene plastic. This tank will have a co

nical section at the bottom, right circular cylindrical mid-section and a hemispherical dome to cover the top. The radius of the tank is 1.5 m, the cylindrical side-walls will be 4.0 m in height, and the apex of the conic section at the bottom has an included angle of 60°. If the tank is filled to the top of the cylindrical side-walls, what is the tank capacity in liters?
Engineering
1 answer:
NNADVOKAT [17]3 years ago
3 0

Answer:

The volume up to cylindrical portion is approx  32355 liters.

Explanation:

The tank is shown in the attached figure below

The volume of the whole tank is is sum of the following volumes

1) Hemisphere top

Volume of hemispherical top of radius 'r' is

V_{hem}=\frac{2}{3}\pi r^3

2) Cylindrical Middle section

Volume of cylindrical middle portion of radius 'r' and height 'h'

V_{cyl}=\pi r^2\cdot h

3) Conical bottom

Volume of conical bottom of radius'r' and angle \theta is

V_{cone}=\frac{1}{3}\pi r^3\times \frac{1}{tan(\frac{\theta }{2})}

Applying the given values we obtain the volume of the container up to cylinder is

V=\pi 1.5^2\times 4.0+\frac{1}{3}\times \frac{\pi 1.5^{3}}{tan30}=32.355m^{3}

Hence the capacity in liters is V=32.355\times 1000=32355Liters

You might be interested in
Current density is given in cylindrical coordinates as J = −106z1.5az A/m2 in the region 0 ≤ rho ≤ 20 µm; for rho ≥ 20 µm, J = 0
Naily [24]

Question:

Current density is given in cylindrical coordinates as J = −10^6z^1.5az A/m² in the region 0 ≤ ρ ≤ 20 µm; for ρ ≥ 20 µm, J = 0.

(a) Find the total current crossing the surface z = 0.1 m in the az direction.

(b) If the charge velocity is 2 × 10^6 m/s at z = 0.1 m, find ρν there.

(c) If the volume charge density at z = 0.15 m is −2000 C/m3, find the charge velocity there.

Answer:

a. -39.8μA

b. -15.81mC/m³

c. 29.05m/s

Explanation:

Given

Density = J = −10^6z^1.5az A/m²

Region: 0 ≤ ρ ≤ 20 µm

ρ ≥ 20 µm

J = 0.

a. Total current is calculated by.

J * ½((ρ1)² - (ρ0)²) * 2 π * φdza.

Where J = Density = -10^6 * z^1.5

ρ1 = Upper bound of ρ = 20

ρ0 = Lower bound of ρ = 0

π = 22/7

φdza = 10^-6

z = 0.1

Total current

= -10^6 * z^1.5 * ½(20² - 0²) * 2 * 22/7 * 10^-6

= 10^6 * 0.1^1.5 * ½(20² - 0²) * 2 * 22/7 * 10^-6

= −39.7543477278310

= -39.8μA

b. Calculating velocity charge density at (ρv)

Density (J) = ρv * V

Where J = Density = -10^6 * z^1.5

V = 2 * 10^6

z = 0.1

Substitute the above values

-10^6 * 0.1 ^1.5 = ρv * 2 * 10^6

ρv = (-10^6 * 0.1^1.5)/(2 * 10^6)

ρv = -0.1^1.5/(2)

ρv = -0.015811388300841

ρv = -0.01581 --------- Approximated

ρv = -15.81mC/m³

c. Calculating Velocity

Velocity = J/V

Where Velocity Charge Density = -2000 C/m3

Where J = -10^6 * z^1.5

z = 0.15

J = -10^6 * 0.15^1.5

J = -58094.75019311125

Velocity = -58094.75019311125/-2000

Velocity = 29.047375096555625m/s

Velocity = 29.05m/s

8 0
3 years ago
You want to plate a steel part having a surface area of 160 with a 0.002--thick layer of lead. The atomic mass of lead is 207.19
Pepsi [2]

Answer:

<u><em>To answer this question we assumed that the area units and the thickness units are given in inches.</em></u>

The number of atoms of lead required is 1.73x10²³.    

Explanation:

To find the number of atoms of lead we need to find first the volume of the plate:

V = A*t

<u>Where</u>:

A: is the surface area = 160

t: is the thickness = 0.002

<u><em>Assuming that the units given above are in inches we proceed to calculate the volume: </em></u>

V = A*t = 160 in^{2}*0.002 in = 0.32 in^{3}*(\frac{2.54 cm}{1 in})^{3} = 5.24 cm^{3}    

Now, using the density we can find the mass:

m = d*V = 11.36 g/cm^{3}*5.24 cm^{3} = 59.5 g

Finally, with the Avogadros number (N_{A}) and with the atomic mass (A) we can find the number of atoms (N):

N = \frac{m*N_{A}}{A} = \frac{59.5 g*6.022 \cdot 10^{23} atoms/mol}{207.19 g/mol} = 1.73 \cdot 10^{23} atoms    

Hence, the number of atoms of lead required is 1.73x10²³.

I hope it helps you!

3 0
3 years ago
Steam at 75 kPa and 8 percent quality is contained in a spring-loaded piston–cylinder device, as shown in Figure, with an initia
Rashid [163]

The heat transferred to and the work produced by the steam during this process  is 13781.618 kJ/kg

<h3>​How to calcultae the heat?</h3>

The Net Change in Enthalpy will be:

= m ( h2 - h1 ) = 11.216 ( 1755.405 - 566.78 ) = 13331.618 kJ/kg

Work Done (Area Under PV curve) = 1/2 x (P1 + P2) x ( V1 - V2)

= 1/2 x ( 75 + 225) x (5 - 2)

W = 450 KJ

From the First Law of Thermodynamics, Q = U + W

So, Heat Transfer = Change in Internal Energy + Work Done

= 13331.618 + 450

Q = 13781.618 kJ/kg

Learn more about heat on:

brainly.com/question/13439286

#SP1

6 0
1 year ago
What is the magnitude of the maximum stress that exists at the tip of an internal crack having a radius of curvature of 3 × 10-4
Vladimir [108]

Answer:

maximum stress is 2872.28 MPa

Explanation:

given data

radius of curvature = 3 × 10^{-4} mm

crack length = 5.5 × 10^{-2} mm

tensile stress = 150 MPa

to find out

maximum stress

solution

we know that  maximum stress formula that is express as

\sigma m = 2 ( \sigma o ) \sqrt{\frac{a}{\delta t}}     ......................1

here σo is applied stress and a is half of internal crack and t is radius of curvature of tip of internal crack

so put here all value in equation 1 we get

\sigma m = 2 ( \sigma o) \sqrt{\frac{a}{\delta t}}  

\sigma m = 2(150) \sqrt{ \frac{\frac{5.5*10^{-2}}{2}}{3*10^{-4}}}  

σm = 2872.28 MPa

so maximum stress is 2872.28 MPa

8 0
3 years ago
A three-point flexure test is conducted on a cylindrical specimen of aluminum oxide. The specimen radius is 5.0 mm and the dista
kondaur [170]

Answer:

Detailed solution is given in the attached diagram

7 0
3 years ago
Other questions:
  • Write multiple if statements:
    6·1 answer
  • Design a circuit with output f and inputs x1, x0, y1, and y0. Let X = x1x0 and Y = y1y0 represent two 2-digit binary numbers. Th
    10·1 answer
  • A common way of measuring the thermal conductivity of a material is to sandwich an electric thermofoil heater between two identi
    9·1 answer
  • Suppose that a class CalendarDate has been defined for storing a calendar date with month, day and year components. (In our sect
    6·1 answer
  • A beam spans 40 feet and carries a uniformly distributed dead load equal to 2.2 klf (not including beam self-weight) and a live
    15·1 answer
  • What engine does the mercedes 500e have​
    5·1 answer
  • The annual average of solar photovoltaic energy in Phoenix is 6,720
    8·1 answer
  • Which actions would the maintenance and operations crews carry out as a building is completed and preparing to open to the publi
    8·2 answers
  • By using a book of the OHS Act, Act 85 of 1993, find the act or regulation where the following extraction comes from "every empl
    12·1 answer
  • Analyze the example of this band saw wheel and axle. The diameter of the wheel is 14 inches. The diameter of the axle that drive
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!