Answer:
v = 666.667 m/s
Explanation:
<u>Given</u>: length L = 25 cm = 0.25 m, B = 600 G = 0.06 T ( 1G = 0.0001 T)
emf= 10 V
Solution:
emf = vBL
v= emf / BL
v = 10 V / (0.06 T× 0.25 m)
v = 666.667 m/s
Thermal potential energy is converted into electric energy.
We must write down laws of conservation of momenta and energy.
For the law of conservation of momenta will we will use two axes. One will be x-axis that will correspond to the east, and the other one will be y-axis corresponding to the north. Jack will be marked as 1 and Jill will be marked as 2.
Law of conservation of energy:

This will give us Jill's velocity after the colision.

Law of conservation of momenta:

We will use the second equation to get the angle at which the Jill is traveling:

When we plug all the number we get:

Please note that this is the angle below the x-axis.
False, it was Wilhelm Wundt that founded the first formal laboratory for research in psychological studies.
*** B.F Skinner is known for inventing the operant conditioning chamber. ***
The acceleration can be found by:

Where v= velocity and t= time
or