She puts each block of ice in the same 3000 mL beaker, each with 2000 mL of water at room temperature, and measures the temperature before and after adding ice. Therefore, small blocks of ice will have the same temperature.
Joanna puts two blocks of ice (one larger than the other) into separate cups and fills each with water. She compares the final water temperature of the two cups after each block of ice melts.
Put each block of ice in the same 3000 mL beaker, each at room temperature, put 2000 mL of water in it, and measure the temperature before and after adding ice. This way you keep the water at the same temperature in the beginning, then the temperature changes after you add the ice, giving you a better idea of the final temperature reading.
Learn more about Temperature here brainly.com/question/24746268
#SPJ9
Answer:
Light travels as a wave. But unlike sound waves or water waves, it does not need any matter or material to carry its energy along. This means that light can travel through a vacuum—a completely airless space. (Sound, on the other hand, must travel through a solid, a liquid, or a gas.)
Explanation:
Answer:
8.5 m/s
Explanation:
please see paper for the work!
Answer:
<em>The magnetic field through the coil at first increases steadily up to its maximum value, and then decreases gradually to its minimum value.</em>
<em></em>
Explanation:
At first, the magnet fall towards the coils; inducing a gradually increasing magnetic field through the coil as it falls into the coil. At the instance when half the magnet coincides with the coil, the magnetic field magnitude on the coil is at its maximum value. When the magnet falls pass the coil towards the floor, the magnetic field then starts to decrease gradually from a strong magnitude to a weak magnitude.
This action creates a changing magnetic flux around the coil. The result is that an induced current is induced in the coil, and the induced current in the coil will flow in such a way as to oppose the action of the falling magnet. This is based on lenz law that states that the induced current acts in such a way as to oppose the motion or the action that produces it.
Answer:
linear charge density = -9.495 ×
C/m
Explanation:
given data
revolutions per second = 1.80 ×
radius = 1.20 cm
solution
we know that when proton to revolve around charge wire then centripetal force is require to be in orbit of radius around provide by electric force
so
- q × E = m × w² × r ..................1
- 9 ×
×
q = m × w² × r ............2
and w =
w =
w = 1.80 ×
×
w = 11304000 rad/s
so here from equation 2
- 9 ×
×
1.80 ×
= 1.672 ×
× 11304000² × 0.0120
linear charge density = -9.495 ×
C/m