Isoelectronic species are ions or elements that have equal number of electrons. From the root word, electron of the word isoelectronic. On the other hand, isotructural species are compounds with the same structures.Hope this answers the question.
Answer:
Explanation:
(a) Firstly, caesium abd potassium are both in Group 1 of the periodic table. Group 1 metals (also called alkali metals) are the most reactive metals of the periodic table. Caesium is more reactive than Potassium because it has a higher electropositivity than Potassium. Electropositivity is the tendency of a metal to donate electron(s) to form a cation. Electropositivity increases down the group; this is because it is easier for atoms to loose electrons on the outermost shell that are far away from the central nucleus as against atoms whose outermost electrons are closer to the central nucleus. <u>Thus, the more "bulky" an atom is, the farther it's outermost electrons (valence electrons) get from the central nucleus and the easier it is to lose the outermost electron(s). And the easier it is for the valence electron(s) to be removed, the more reactive the atom would be and vice-versa.</u>
Caesium is more reactive than potassium because it is more bulky than potassium, with an atomic number of 55, while potassium has an atomic number of 19.
NOTE: The closer an electron is to the nucleus, the more difficult it is to be removed from it's shell.
(b) i. Formula for Caesium Nitrate:
Symbol for Caesium is Cs and Nitrate is NO₃⁻.
Cs⁺ + NO₃⁻ ↔ CsNO₃
Formula for Caesium Nitrate is CsNO₃
ii. Formula for Caesium sulphate
Symbol for caesium is Cs and Sulphate is SO₄²⁻
Cs⁺ + SO₄²⁻ ↔ Cs₂SO₄
Formula for Caesium sulphate is Cs₂SO₄
NOTE: When writing the formulae, the charges would be exchanged to form the subscript as seen on the product sides above.
Answer:
dating and correlating the strata in which it is found
Explanation:
Answer:
I think that the answer is N20:2(14.01)+1(16.06)=44.02g/mol(c) fluorine Di nitrogen monoxide contains how many mom 6.022 x
1023 mol N20
A visual representation of covalent bonding which represents the valence shell electrons in the molecule is said to be a Lewis structure. The lines represents the shared electron pairs and dots represents the electrons that are not involved in the bonding i.e lone pairs.
Number of valence electrons in each atom:
For Carbon,
= 4
For Hydrogen,
= 1
For Nitrogen,
= 5
The Lewis structure of
is shown in the attached image.
The formula of calculating formula charge =
-(1)
where, F.C is formal charge, V.E is number of valence electrons, N.E is number of non-bonding electrons and B.E is number of bonding electrons.
Now, calculating the formal charge:
For
on left side:

For
:

For
on right side:

The formula charge of each atom other than hydrogen is shown in the attached image.