Answer:- Mass of the titanium alloy is 7.01 g, choice C is correct.
Solution:- The heat of fusion is given as 422.5 joules per gram and it also says that 2960 joules of heat is required to melt the metal completely.
The suggested equation is, 
where Q is the heat energy, m is the mass and Hf is the heat of fusion.
Since, we are asked to calculate the mass, the equation could be written as:

Let's plug in the values in it:

m = 7.01 g
So, the mass of the titanium alloy is 7.01 g, choice C is correct.
Every 2 million years the amount is halved
0 million = 200g
2 million = 200g/2 = 100g
4 million = 100g/2 = 50g
Answer:
900 K
Explanation:
Recall the ideal gas law:

Because only pressure and temperature is changing, we can rearrange the equation as follows:

The right-hand side stays constant. Therefore:

The can explodes at a pressure of 90 atm. The current temperature and pressure is 300 K and 30 atm, respectively.
Substitute and solve for <em>T</em>₂:

Hence, the temperature must be reach 900 K.
Answer: both the different glycosidic linkages of the molecules and the different hydrogen bonding partners of the individual chains.
Explanation:
Glycogen is a polysaccharide of glucose which is a form of energy storage in fungi, bacteria and animals. Glycogen is primarily stored in the liver cells and skeletal muscle.
The difference in interchain stability between the polysaccharides glycogen and cellulose is due to the different glycosidic linkages of the molecules and the different hydrogen bonding partners of the individual chains.