Answer:
Explanation:
Given that
g=9.8m/s²
The spring constant is
k=50N/m
The length of the bungee cord is
Lo=32m
Height of bridge which one end of the bungee is tied is 91m
A steel ball of mass 92kg is attached to the other end of the bungee.
The potential energy(Us) of the steel ball before dropped from the bridge is given as
P.E= mgh
P.E= 92×9.8×91
P.E= 82045.6 J
Us= 82045.6 J
Potential energy)(Uc) of the cord is given as
Uc= ½ke²
Where 'e' is the extension
Then the extension is final height extended by cord minus height of cord
e=hf - hi
e=hf - 32
Uc= ½×50×(hf-32)²
Uc=25(hf-32)²
Using conservation of energy,
Then,
The potential energy of free fall equals the potential energy in string
Uc=Us
25(hf-32)²=82045.6
(hf-32)² = 82045.6/25
(hf-32)²=3281.825
Take square root of both sides
√(hf-32)²=√(3281.825)
hf-32=57.29
hf=57.29+32
hf=89.29m
We neglect the negative sign of the root because the string cannot compressed
Force = (mass) x (acceleration)
= (0.025 kg) x (5 m/s²)
= 0.125 Newton
The magnetic field direction and direction of induced current in a wire are related by the right hand grip rule. Since the magnetic field was upwards, the thumb points upwards and the fingers curl around it. When viewed from above, it is seen as a current flowing in the counter clockwise direction.
Answer:
it makes the object speed increase, decrease and change the direction of the object.
Hope it helps!