= k
<u>Explanation:</u>
The relation between volume, V of gas and Temperature, T of a gas is related by Charles Law.
This law states that the volume of a given amount of gas held at a constant pressure is directly proportional to the Kelvin temperature
Thus,
= k
where k is a constant
Therefore,
=
=
...
This shows, as the volume of a gas goes up, the temperature also goes up and vice-versa.
The lowest value of the henry's law for methane gas (CH₄) will be obtained with H₂O as the solvent and a temperature of 349 K.
The lowest value of the henry's law for methane gas (CH₄) will be obtained with H₂O as the solvent and a temperature of 349 K.
Henry's law: This law states that at a constant temperature, the amount of a gas dissolved in a given type and volume of liquid is directly proportional to the partial pressure of that gas that in equilibrium with that liquid.
Mathematically it can be written as:

So, for the methane gas , lowest value of the henry's law obtained at 349 K and with H₂O as the solvent.
C) Steam has the most energy.
Steam has more energy than Ice and Water because the particles in ice are close together, the particles in water flow more loosely than in a solid like ice and in steam they are very active.
I hope that helps u understand :)
The answer is 19.9 grams cadmium.
Assuming there was no heat leaked from the system, the heat q lost by cadmium would be equal to the heat gained by the water:
heat lost by cadmium = heat gained by the water
-qcadmium = qwater
Since q is equal to mcΔT, we can now calculate for the mass m of the cadmium sample:
-qcadmium = qwater
-(mcadmium)(0.850J/g°C)(38.6°C-98.0°C)) = 150.0g(4.18J/g°C)(38.6°C-37.0°C)
mcadmium = 19.9 grams