Answer:
Strong acids are assumed 100% dissociated in water- True
As a solution becomes more basic, the pOH of the solution increases- false
The conjugate base of a weak acid is a strong base- true
The Ka equilibrium constant always refers to the reaction of an acid with water to produce the conjugate base of the acid and the hydronium ion- True
As the Kb value for a base increases, base strength increases- true
The weaker the acid, the stronger the conjugate base- true
Explanation:
An acid is regarded as a strong acid if it attains 100% or complete dissociation in water.
The pOH decreases as a solution becomes more basic (as OH^- concentration increases).
Ka refers to the dissociation of an acid HA into H3O^+ and A^-.
The greater the base dissociation constant, the greater the base strength.
The weaker an acid is, the stronger , its conjugate base will be.
Answer:
3.99998575239 pounds per gallon (US)
Answer:
b) +2 and +3.
Explanation:
Hello,
In this case, given the molecular formulas:

And:

We can relate the subscripts with the oxidation states by knowing that they are crossed when the compound is formed, for that reason, we notice that oxygen oxidation state should be -2 for both cases and the oxidation state of X in the first formula must be +2 since both X and O has one as their subscript as they were simplified:

Moreover, for the second case the oxidation state of X should be +3 in order to obtain 3 as the subscript of oxygen:

Thus, answer is b)+2 and +3
Best regards.
Answer : The reaction is endothermic.
Explanation :
Formula used :

where,
= change in temperature = 
Q = heat involved in the dissolution of KCl = ?
m = mass = 0.500 + 50.0 = 50.5 g
c = specific heat of resulting solution = 
Now put all the given value in the above formula, we get:


The heat involved in the dissolution of KCl is positive that means as the change in temperature decreases then the reaction is endothermic and as the change in temperature increases then the reaction is exothermic.
Hence, the reaction is endothermic.
a)
A: Copper
B: CuO
C: 
D: $\mathrm{CuCO_3}$
E: $\mathrm{CO_2}$
F: $\mathrm{Cu(NO_3)_2}$
b)
$\mathrm{CuO+ H_2SO_4}\rightarrow \mathrm{CuSO_4 + H_2O}$
c)
$\mathrm{CuCO_3+ 2HNO_3}\rightarrow \mathrm{Cu(NO_3)_2+ CO_2+ H_2O}$