She should create a computer animated view of the design to walk the client through it so that client will understand and get the picture of the design.
Answer:
A=False
B=False
C=False
D=False
E=False
F=False
Explanation:
A. In an isothermal process, only the reversibly heat transfer is 0, 
B. Consider the phase change of boiling water. Here, the temperature remains constant but the internal energy of the system increases.
C. This is not true even in reversible process, as can be inferred from the equation in part A.
D. This is only true in reversible processes, but not in all isothermal processes.
E. Consider the phase change of freezing water. Here, the surroundings are increasing their entropy, as they are taking in heat from the system.
F. This is not true if
, like in answer B. One case where this is true is in the reversible isothermal expansion (or compression) of an ideal gas.
Answer:
2.83 kg
Explanation:
Given:
Volume, V = 0.8 m³
gage pressure, P = 200 kPa
Absolute pressure = gage pressure + Atmospheric pressure
= 200 + 101 = 301 kPa = 301 × 10³ N/m²
Temperature, T = 23° C = 23 + 273 = 296 K
Now,
From the ideal gas equation
PV = mRT
Where,
m is the mass
R is the ideal gas constant = 287 J/Kg K. (for air)
thus,
301 × 10³ × 0.8 = m × 287 × 296
or
m = 2.83 kg
Sorry bro people do this22.2 pls
False, it depends on the situation. If the lift is tilting or anything like I would then get down. Certain training will say to get out and see if you can keep lowering,