The displacement ∆S of the particle during the interval from t = 2sec to 4sec is; 210 sec
<h3>How to find the displacement?</h3>
We are given the velocity equation as;
s' = 40 - 3t²
Thus, the speed equation will be gotten by integration of the velocity equation to get;
s = ∫40 - 3t²
s = 40t - ¹/₂t³
Thus, the displacement between times of t = 2 sec and t = 4 sec is;
∆S = [40(4) - ¹/₂(4)³] - [40(2) - ¹/₂(2)³]
∆S = 210 m
Read more about Displacement at; brainly.com/question/4931057
#SPJ1
Answer:
B. Acid rain.
C. Photochemical smog.
Explanation:
Oxides of nitrogen contribute to the formation of photochemical smog and acid rain. Photochemical smog is a type of smog produced when ultraviolet light from the sun reacts with nitrogen oxides in the atmosphere while on the other hand, when nitrogen oxide react with the water vapor in the atmosphere forming nitric acid which falls on the earth surface with the help of precipitation.
Didactic apparatus is a method of teaching in which scientific approach is follow in order to present the information to the student. This method effectively teaches the student with the required theoretical knowledge .
Answer:


Explanation:
Given that:
x(t) = 10 sin(10t) . sin (15t)
the objective is to find the power and the rms value of the following signal square.
Recall that:
sin (A + B) + sin(A - B) = 2 sin A.cos B
x(t) = 10 sin(15t) . cos (10t)
x(t) = 5(2 sin (15t). cos (10t))
x(t) = 5 × ( sin (15t + 10t) + sin (15t-10t)
x(t) = 5sin(25 t) + 5 sin (5t)
From the knowledge of sinusoidial signal Asin (ωt), Power can be expressed as:

For the number of sinosoidial signals;
Power can be expressed as:

As such,
For x(t), Power 



For the number of sinosoidial signals;

For x(t), the RMS value is as follows:




