<h3>Answer:</h3>
Excess Reagent = NBr₃
<h3>Solution:</h3>
The Balance Chemical Equation for the reaction of NBr₃ and NaOH is as follow,
2 NBr₃ + 3 NaOH → N₂ + 3 NaBr + 3 HBrO
Calculating the Limiting Reagent,
According to Balance equation,
2 moles NBr₃ reacts with = 3 moles of NaOH
So,
40 moles of NBr₃ will react with = X moles of NaOH
Solving for X,
X = (40 mol × 3 mol) ÷ 2 mol
X = 60 mol of NaOH
It means 40 moles of NBr₃ requires 60 moles of NaOH, while we are provided with 48 moles of NaOH which is Limited. Therefore, NaOH is the limiting reagent and will control the yield of products. And NBr₃ is in excess as some of it is left due to complete consumption of NaOH.
Answer:
2:8
Explanation:
The reaction equation is a given as:
2C₄H₁₀ + 130₂ → 8CO₂ + 10H₂O
From the reaction equation, the mole ratio is 2:8
Butane is C₄H₁₀
Carbon dioxide CO₂
From the reaction;
2 moles of butane will produce 8 moles of carbon dioxide
Answer:
inter atomic bonds
Explanation:
because it is loosely held
Answer:

Explanation:
The symbol for TIN is Sn.
When Sn loses 2 electrons, it gets a double positive charge ( +2 ) and becomes
.
It becomes a cation.
The name of Ion is Tin ( II ) Ion.
![\rule[225]{225}{2}](https://tex.z-dn.net/?f=%5Crule%5B225%5D%7B225%7D%7B2%7D)
Hope this helped!
<h3>~AH1807</h3>
Answer: CoBr3 < K2SO4 < NH4 Cl
Justification:
1) The depression of the freezing point of a solution is a colligative property, which means that it depends on the number of particles of solute dissolved.
2) The formula for the depression of freezing point is:
ΔTf = i * Kf * m
Where i is the van't Hoof factor which accounts for the dissociation of the solute.
Kf is the freezing molal constant and only depends on the solvent
m is the molality (molal concentration).
3) Since, you are assuming equal concentrations and complete dissociation of the given solutes, the solute with more ions in the molecular formula will result in the solution with higher depression of the freezing point (lower freezing point).
4) These are the dissociations of the given solutes:
a) NH4 Cl (s) --> NH4(+)(aq) + Cl(-) (aq) => 1 mol --> 2 moles
b) Co Br3 (s) --> Co(3+) (aq) + 3Br(-)(aq) => 1 mol --> 4 moles
c) K2SO4 (s) --> 2K(+) (aq) + SO4 (2-) (aq) => 1 mol --> 3 moles
5) So, the rank of solutions by their freezing points is:
CoBr3 < K2SO4 < NH4 Cl