3rd: Every action has an equal and opposite reaction. So the third law basically says that if you shoot out stuff in one direction you will move in the other direction. This is howrockets work in a vacuum. They have a source of fuel which is heated up so that it expands and is pushed out of the rocket.
Hope this helps a little... ^^
To go from molecules, we first need to convert to moles and then convert to grams.
To convert from molecules to moles, we need to divide by Avogadro's constant.
1.15*10^21 molecules * (1 mole/6.022*10^23 molecules) = 0.0019097 moles
To convert from moles to grams, we need to use the molar mass.
The molar mass of P₂O₅ is (2*30.98)+(5*16.00) = 141.96
You can find the molar mass using the periodic table.
0.0019097 moles * (141.96 grams/1 mole) = 0.2711 grams.
Since we have 3 significant digits in 1.15*10^21, that means our final answer is limited to 3 significant digits.
Your final answer is 0.271 grams.
Answer:

Explanation:
Let's firstly identify the atomic number (the number of protons) of Pu. This is done by referring to the periodic table and finding Pu. The atomic number of Pu is:

In order to identify the type of a nuclear decay, we need to find the N/Z ratio. This is the ratio between the number of neutrons and the atomic number of an isotope. The number of neutrons is found by subtracting the number of protons from the mass number:

That said, the N/Z ratio equation becomes:

This is a relatively high number thinking about the belt of stability of isotopes. Ideally, stable isotopes with a low Z value have an N/Z ratio of 1. Heavier isotopes with Z > 50 would have a slightly higher N/Z ratio and would be stable around N/Z = 1.25. This means we wish to decrease the N/Z ratio as much as possible.
Among all the decays, alpha-decay is preferred to decrease the N/Z ratio significantly (1.45 is much higher than 1.25). That said, we'll release an alpha particle with some nucleotide X of mass M and atomic number Z:

According to the mass and charge conservation law:


Identify an element with Z = 92 in the periodic table. This is uranium, U:

A sizing beads it help counter balance
Answer:
mass and volume are independent. Two objects with the same volume can have different masses hence they can have different densities
Explanation:
The mass of atoms their size and how they are arranged determine the density