1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
levacccp [35]
3 years ago
7

What is the kinetic energy of an object moving 40m/s with a mass of 20kg?

Physics
1 answer:
Svet_ta [14]3 years ago
7 0
KE = (1/2) (mass) (speed)²

KE = (1/2) (20 kg) (40 m/s)²

KE = (1/2) (20 kg) (1,600 m²/s²)

KE = (10 kg) (1,600 m²/s²)

KE = 16,000 Joules
You might be interested in
A uniformly charged ring of radius 10.0 cm has a total charge of 75.0 mC. Find the electric field on the axis of the ring at (a)
wlad13 [49]

Answer:

(a) 6650246.305 N/C

(b) 24150268.34 N/C

(c) 6408227.848 N/C

(d) 665024.6305 N/C

Explanation:

Given:

Radius of the ring (r) = 10.0 cm = 0.10 m           [1 cm = 0.01 m]

Total charge of the ring (Q) = 75.0 μC = 75\times 10^{-6}\ \mu C    [1 μC = 10⁻⁶ C]

Electric field on the axis of the ring of radius 'r' at a distance of 'x' from the center of the ring is given as:

E_x=\dfrac{kQx}{(x^2+r^2)^\frac{3}{2}}

Plug in the given values for each point and solve.

(a)

Given:

Q=75\times 10^{-6}\ \mu C, r=0.01\ m, a=1.00\ cm=0.01\ m,k=9\times 10^{9}\ Nm^2/C^2

Electric field is given as:

E_x=\dfrac{(9\times 10^{9})(75\times 10^{-6})(0.01)}{((0.01)^2+(0.1)^2)^\frac{3}{2}}\\\\E_x=\dfrac{6750}{1.015\times 10^{-3}}\\\\E_x=6650246. 305\ N/C

(b)

Given:

Q=75\times 10^{-6}\ \mu C, r=0.01\ m, a=5.00\ cm=0.05\ m,k=9\times 10^{9}\ Nm^2/C^2

Electric field is given as:

E_x=\dfrac{(9\times 10^{9})(75\times 10^{-6})(0.05)}{((0.05)^2+(0.1)^2)^\frac{3}{2}}\\\\E_x=\dfrac{33750}{1.3975\times 10^{-3}}\\\\E_x=24150268.34\ N/C

(c)

Given:

Q=75\times 10^{-6}\ \mu C, r=0.01\ m, a=30.0\ cm=0.30\ m,k=9\times 10^{9}\ Nm^2/C^2

Electric field is given as:

E_x=\dfrac{(9\times 10^{9})(75\times 10^{-6})(0.30)}{((0.30)^2+(0.1)^2)^\frac{3}{2}}\\\\E_x=\dfrac{202500}{0.0316}\\\\E_x=6408227.848\ N/C

(d)

Given:

Q=75\times 10^{-6}\ \mu C, r=0.01\ m, a=100\ cm=1\ m,k=9\times 10^{9}\ Nm^2/C^2

Electric field is given as:

E_x=\dfrac{(9\times 10^{9})(75\times 10^{-6})(1)}{((1)^2+(0.1)^2)^\frac{3}{2}}\\\\E_x=\dfrac{675000}{1.015}\\\\E_x=665024.6305\ N/C

7 0
3 years ago
While running at a constant velocity, how should you throw a ball with respect to you so that you can catch it yourself?
timurjin [86]
You are running at constant velocity in the x direction, and based on the 2D definition of projectile motion, Vx=Vxo. In other words, your velocity in the x direction is equal to the starting velocity in the x direction. Let's say the total distance in the x direction that you run to catch your own ball is D (assuming you have actual values for Vx and D). You can then use the range equation, D= (2VoxVoy)/g, to find the initial y velocity, Voy. g is gravitational acceleration, -9.8m/s^2. Now you know how far to run (D), where you will catch the ball (xo+D), and the initial x and y velocities you should be throwing the ball at, but to find the initial velocity vector itself (x and y are only the components), you use the pythagorean theorem to solve for the hypotenuse. Because you know all three sides of the triangle, you can also solve for the angle you should throw the ball at, as that is simply arctan(y/x). 
5 0
3 years ago
An Airbus A350 is initially moving down the runway at 6.0 m/s preparing for takeoff. The pilot pulls on the throttle so that the
alexdok [17]

Answer:

t=67.7s

Explanation:

From this question we know that:

Vo = 6m/s

a = 1.8 m/s2

D = 1500m

And we also know that:

X=V_{o}*t + \frac{a*t^{2}}{2}   Replacing the known values:

1500=6t+0.9*t^{2}    Solving for t we get 2 possible answers:

t1 = -44.3s   and t2 = 67.7s    Since negative time represents an instant before the beginning of the movement, t1 is discarded. So, the final answer is:

t = 67.7s

8 0
3 years ago
A 100 Kg man is diving off a 50 meter cliff. What is his kinetic energy when he is 20 meters from the water?
iren2701 [21]

Answer:

K.E=29.403125J

Explanation:

From the question we are told that

Mass M=100

Height 50-20=30m

Generally the equation for velocity before impact is is is mathematically given by

v=\sqrt{2gh}

v=\sqrt{2*9.8*30}

v=24.25

Generally the equation for Kinetic Energy is is mathematically given by

K.E=\frac{1}{2}mv^2

K.E=\frac{1}{2}*100*(24.25)^2\\

K.E=29403.125J

K.E=29.403125J

8 0
3 years ago
If you are pushing on a crate on a frictionless surface in one direction, and your friend is pushing on the crate in the opposit
liberstina [14]

Answer:

Its not A..

Explanation:

I chose A - was incorrect

3 0
3 years ago
Other questions:
  • Look at the triangle below.
    7·1 answer
  • (quick help please??)A mechanic uses a mechanical lift to raise a car. The car weighs 10,200 N. The work required to do this was
    14·1 answer
  • Over the past 150 years, what has happened to the amount of forest cover in Minnesota?
    6·1 answer
  • At the local playground, a 21-kg child sits on the right end of a horizontal teeter-totter, 1.8 m from the pivot point. On the l
    6·1 answer
  • An illustration of the major tectonic plates is provided below.
    12·2 answers
  • Incident beam<br> Which order is the brightest?
    13·1 answer
  • A car is traveling at 35.8 m/s. What acceleration would it have if it took 2.0 s to come to a complete stop?
    10·1 answer
  • The graph shows the amplitude of a passing wave over time in seconds (s) What is the approximate frequency of the wave shown? A.
    15·1 answer
  • What happens to heat energy after an object is cooled down lolololol asking for my bff
    8·1 answer
  • If you do 40 j of work in 4s, how much power did you generate?
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!