Answer:
Explanation:
331 m/s / 2.5e4 cyc/s = 0.01324 m ≈ 1.3 cm
Im going to tell you what to do but not the result. So pay close attention: the first thing you need to do is convert miles/h to m/s. Then for the part a) <span>divide the final velocity by the initial velocity. That will give you the amount of it will take to accelerate to the final velocity.Now for the part b you </span>use the formula v=vo+at. I hope this can help you
Answer:
travilng on a curve in the road
Explanation:
Answer:
Explanation:
angular momentum of the putty about the point of rotation
= mvR where m is mass , v is velocity of the putty and R is perpendicular distance between line of velocity and point of rotation .
= .045 x 4.23 x 2/3 x .95 cos46
= .0837 units
moment of inertia of rod = ml² / 3 , m is mass of rod and l is length
= 2.95 x .95² / 3
I₁ = .8874 units
moment of inertia of rod + putty
I₁ + mr²
m is mass of putty and r is distance where it sticks
I₂ = .8874 + .045 x (2 x .95 / 3)²
I₂ = .905
Applying conservation of angular momentum
angular momentum of putty = final angular momentum of rod+ putty
.0837 = .905 ω
ω is final angular velocity of rod + putty
ω = .092 rad /s .
1)due to it's position in the gravitational field
2)due to it's motion