The difference between short period and long period is based upon the number of elements in each period. Shortest period is the first period which contains elements, while the longest period is the 6th period which contains 32 elements.
I hope it helps you ❤️❤️❤️❤️
To solve this we assume
that the gas inside is an ideal gas. Then, we can use the ideal gas
equation which is expressed as PV = nRT. At a constant pressure and number of
moles of the gas the ratio T/V is equal to some constant. At another set of
condition of temperature, the constant is still the same. Calculations are as
follows:
T1 / V1 = T2 / V2
T2 = T1 x V2 / V1
T2 = 280 x 20.0 / 10
<span>T2 = 560 K</span>
Answer:
molarity of diluted solution = 1.25 M
Explanation:
Using,
C1V1 (Stock solution) = C2V2 (dilute solution)
given that
C1 = 2.50M
V1 = 250ML
C2 = ?
V2 = 500ML
2.50 M x 250 mL = C2 x 500 mL
C2 = (2.50 M x 250 mL) / 500 mL
C2 = 1.25 M
Hence, molarity of diluted solution = 1.25 M
A. The heat is needed to melt 100.0 grams of ice that is already at 0°C is +33,400 J.
<h3>What is Specific heat capacity?</h3>
Specific heat capacity is the quantity of heat needed to raise the temperature per unit mass.
<h3>
Heat needed to melt the cube of ice</h3>
The heat is needed to melt 100.0 grams of ice that is already at 0°C is calculated as follows;
Q = mL
where;
- m is mass of the ice
- L is latent heat of fusion of ice = 334 J/g
Q = 100 x 334
Q = 33,400 J
Thus, the heat is needed to melt 100.0 grams of ice that is already at 0°C is +33,400 J.
Learn more about heat capacity here: brainly.com/question/16559442
#SPJ1