3Mg + N₂= Mg₃N₂
n(Mg)=12,2g÷<span>24,4g/mol=0,5mol-limiting reagent
</span>n(N₂)=5,16g÷28g/mol=0,18mol
n(Mg₃N₂):n(Mg)=1:3, n(Mg₃N₂)=0,166mol, m(Mg₃N₂)=0,166·101,2=16,8g.
%(N)= 2·Ar(N)÷Mr(Mg₃N₂) = 2·14÷101,2=27,66%=0,2766
%(Mg) = 3·Ar(Mg)÷Mr(Mg₃N₂)= 3·24,4÷101,2=72,34% or 100% - 27,66%= 72,34%.
Different forms of matter have different melting/boiling points. For example, at 100 degrees Celsius, H2O (water) will turn from lliquid to gas. But NaOH (table salt) doesn't even go from solid to liquid until some 800 degrees Celsius. So, in order to figure out which state matter is at 35 Celsius, you'd have to be more specific about what kind of matter...
Answer:
N2(g) + 3H2(g) → 2 NH3(g)
Explanation:
N2(g) + H2(g) → NH3(g)
We start equaling the number of N atoms in both sides multiplying by 2 the NH3.
N2(g) + H2(g) → 2 NH3(g)
So we equals the H atoms (there are six in products sites)
N2(g) + 3 H2(g) → 2 NH3(g)
There are about 7 or 8 primary tectonic plates. The lithosphere is made of about a dozen plates. The plates fit together like the pieces of a jigsaw puzzle. However, the plates can move. This causes earthquakes, volcanoes, and mountains to form.
Hope it helps