Answer : The value of change in entropy for freezing process is, -18.07 J/mol.K
Explanation :
Formula used :

where,
= change in entropy
= change in enthalpy of fusion = 3.17 kJ/mol
As we know that:

= freezing point temperature = 
Now put all the given values in the above formula, we get:



Therefore, the value of change in entropy for freezing process is, -18.07 J/mol.K
Answer:
Enthalpy change for the reaction is -67716 J/mol.
Explanation:
Number of moles of
in 50.0 mL of 0.100 M of 
= Number of moles of HCl in 50.0 mL of 0.100 M of HCl
=
moles
= 0.00500 moles
According to balanced equation, 1 mol of
reacts with 1 mol of HCl to form 1 mol of AgCl.
So, 0.00500 moles of
react with 0.00500 moles of HCl to form 0.00500 moles of AgCl
Total volume of solution = (50.0+50.0) mL = 100.0 mL
So, mass of solution = (
) g = 100 g
Enthalpy change for the reaction = -(heat released during reaction)/(number of moles of AgCl formed)
=
= ![\frac{-100g\times 4.18\frac{J}{g.^{0}\textrm{C}}\times [24.21-23.40]^{0}\textrm{C}}{0.00500mol}](https://tex.z-dn.net/?f=%5Cfrac%7B-100g%5Ctimes%204.18%5Cfrac%7BJ%7D%7Bg.%5E%7B0%7D%5Ctextrm%7BC%7D%7D%5Ctimes%20%5B24.21-23.40%5D%5E%7B0%7D%5Ctextrm%7BC%7D%7D%7B0.00500mol%7D)
= -67716 J/mol
[m = mass, c = specific heat capacity,
= change in temperature and negative sign is included as it is an exothermic reaction]
2 Al+ 3 CuO-> 1 Al2O3+ 3Cu
The number of molecules that are in balloon are = 2.227 x10^23 molecules
<h3> calculation</h3>
calculate the number of moles of NO
moles = mass/molar mass
molar mass of NO = 14+ 16 = 30 g/mol
moles is therefore= 11.1 g/30g/mol= 0.37 moles
by use of Avogadro's constant that is
1 mole= 6.02 x10^23 molecules
0.37 =? molecules
=(6.02 x10^23 x 0.37 moles)/ 1mole=2.227 x10^23 molecules