Answer:
Tension= 21,900N
Components of Normal force
Fnx= 17900N
Fny= 22700N
FN= 28900N
Explanation:
Tension in the cable is calculated by:
Etorque= -FBcostheta(1/2L)+FT(3/4L)-FWcostheta(L)= I&=0 static equilibrium
FTorque(3/4L)= FBcostheta(1/2L)+ FWcostheta(L)
Ftorque=(Fcostheta(1/2L)+FWcosL)/(3/4L)
Ftorque= 2/3FBcostheta+ 4/3FWcostheta
Ftorque=2/3(1350)(9.81)cos55° + 2/3(2250)(9.81)cos 55°
Ftorque= 21900N
b) components of Normal force
Efx=FNx-FTcos(90-theta)=0 static equilibrium
Fnx=21900cos(90-55)=17900N
Fy=FNy+ FTsin(90-theta)-FB-FW=0
FNy= -FTsin(90-55)+FB+FW
FNy= -21900sin(35)+(1350+2250)×9.81=22700N
The Normal force
FN=sqrt(17900^2+22700^2)
FN= 28.900N
Answer:
Yes
Explanation:
Yes. The momentum is the same when the speed of the tennis ball is 18 times greater than the speed of the basketball and the velocities of both objects are in the same direction.
Explanation:
In total, the length is measured from the tip of the bow in a linear fashion to the stern of the formation of delight including any back-deck extensions. The measurement involves bow sprits; rudders; detachable engines and engine sections; handles; and various fittings and connections.
Importance in calculating a boat's length:
it affects the transportation costs (the longer the length, the higher the cost).
The pontoon's length counts as you find out how much rope you need to wrestle.
The cost of vessel settlement on marinas depends in part on the pontoon length. As more area is consumed by a more drawn pontoon, the docking charges are higher.
Transportation guidelines will probably not allow pontoons past a specific length on specific occasions of the day.
consider the motion in x-direction
= initial velocity in x-direction = ?
X = horizontal distance traveled = 100 m
= acceleration along x-direction = 0 m/s²
t = time of travel = 4.60 sec
Using the equation
X =
t + (0.5)
t²
100 =
(4.60)
= 21.7 m/s
consider the motion along y-direction
= initial velocity in y-direction = ?
Y = vertical displacement = 0 m
= acceleration along x-direction = - 9.8 m/s²
t = time of travel = 4.60 sec
Using the equation
Y =
t + (0.5)
t²
0 =
(4.60) + (0.5) (- 9.8) (4.60)²
= 22.54 m/s
initial velocity is given as
= sqrt((
)² + (
)²)
= sqrt((21.7)² + (22.54)²) = 31.3 m/s
direction: θ = tan⁻¹(22.54/21.7) = 46.12 deg
Answer:
Your project goes well.
Explanation:
Because that's how it works.