Powdered coke prevent the heat loss. As a result, it prevents burning of carbon electrodes.
The problem is incomplete. However, there can only be two probable questions for this problem. First, you can be asked the individual partial pressures of each gas. Second, you can be asked the volume occupied by each gas. I can answer both cases for you.
1.
Let's assume ideal gas.
Pressure for N₂: 2 bar*0.4 = 0.8 bar
Pressure for CO₂: 2 bar*0.5 = 1 bar
Pressure for CH₄: 2 bar*0.1 = 0.2 bar
2. For the volume, let's find the total volume first.
V = nRT/P = (1 mol)(8.314 J/mol-K)(30 +273 K)/(2 bar*10⁵ Pa/1 bar)
V = 0.0126 m³
Hence,
Volume for N₂: 0.0126 bar*0.4 = 0.00504 m³
Volume for CO₂: 0.0126*0.5 = 0.0063 m³
Volume for CH₄: 0.0126*0.1 = 0.00126 m³
Answer:
Part A
The volume of the gaseous product is
Part B
The volume of the the engine’s gaseous exhaust is
Explanation:
Part A
From the question we are told that
The temperature is 
The pressure is 
The of 
The chemical equation for this combustion is

The number of moles of
that reacted is mathematically represented as

The molar mass of
is constant value which is
So 

The gaseous product in the reaction is
and water vapour
Now from the reaction
2 moles of
will react with 25 moles of
to give (16 + 18) moles of
and 
So
1 mole of
will react with 12.5 moles of
to give 17 moles of
and 
This implies that
0.8754 moles of
will react with (12.5 * 0.8754 ) moles of
to give (17 * 0.8754) of
and 
So the no of moles of gaseous product is


From the ideal gas law

making V the subject

Where R is the gas constant with a value 
Substituting values
Part B
From the reaction the number of moles of oxygen that reacted is


The volume is


No this volume is the 21% oxygen that reacted the 79% of air that did not react are the engine gaseous exhaust and this can be mathematically evaluated as

Substituting values
Before the development of electrophoresis to separate macromolecules, high-speed centrifugation was used to isolate DNA.
A laboratory procedure called electrophoresis is used to divide DNA, RNA, or protein molecules according to their size and electrical charge. The molecules are moved by an electric current through a gel or other matrix. The technology of electrophoresis is crucial for the separation and examination of nucleic acids. At the lab bench, cloned DNA fragments are frequently isolated and worked with using nucleic acid electrophoresis.
High-speed centrifugation employs centrifugal force to separate particles with various densities or masses suspended in a liquid. High-speed rotation of the solution inside the tube causes each particle's angular momentum to experience centrifugal forces inversely proportionate to its mass.
To know more about electrophoresis refer to: brainly.com/question/28709201
#SPJ4