Given,
P1 = 0.98 atm
V1 = 0.5 L
V2 = 1.0 L
P2 = ?
Solution,
According to Boyle's Law,
P1V1 = P2V2
0.98 × 0.5 = 1.0 × P2
P2 = 0.98 × 0.5 × 1.0
P2 = 0.49 atm
Answer - The new pressure is 0.49 atm.
Answer:The answer to this question comes from experiments done by the scientist Robert Boyle in an effort to improve air pumps. In the 1600's, Boyle measured the volumes of gases at different pressures. Boyle found that when the pressure of gas at a constant temperature is increased, the volume of the gas decreases. when the pressure of gas is decreased, the volume increases. this relationship between pressure and volume is called Boyle's law.
Explanation: So, at constant temperature, the answer to your answer is: the volume decreases in the same ratio as the ratio of pressure increases.
BUT, in general, there is not a single answer to your question. It depend by the context.
For example, if you put the gas in a rigid steel tank (volume is constant), you can heat the gas, so provoking a pressure increase. But you won't get any change in volume.
Or, if you heat the gas in a partially elastic vessel (as a tire or a soccer ball) you will get both an increase of volume AND an increase of pressure.
FINALLY if you inflate a bubblegum ball, the volume will be increased without any change in pressure and temperature, because you have increased the NUMBER of molecules in the balloon.
There are many other ways to change volume and pressure of a gas that are different from the Boyle experiment.
Answer:
pH of HNO₃ having an hydrogen ion concentration of 0.71M is 0.149
Explanation:
HNO₃ (aqueous) ⇄ H⁺ + NO3⁻
The pH is defined as the negative log of the hydrogen ion concentration
pH = - log [H⁺]
From the question, the hydrogen ion concentration is given as 0.71M, therefore
pH = -log [0.71]
= 0.149
Answer: 1.
2. 3 moles of
: 2 moles of 
3. 0.33 moles of
: 0.92 moles of 
4.
is the limiting reagent and
is the excess reagent.
5. Theoretical yield of
is 29.3 g
Explanation:
To calculate the moles :

The balanced chemical equation is:
According to stoichiometry :
3 moles of
require = 2 moles of
Thus 0.33 moles of
will require=
of
Thus
is the limiting reagent as it limits the formation of product and
is the excess reagent.
As 3 moles of
give = 2 moles of
Thus 0.33 moles of
give =
of
Theoretical yield of
Thus 29.3 g of aluminium chloride is formed.