Answer:
Generally, K+ ions ensures re-polarization of the membrane potential. It always ensures that the neuron returns its resting state, protecting the neurons and ensuring episode of rest before the next action potential.
K+ does this by leaving the axon, making the inner layer more negative. This is resting membrane potential. Because there are many K+ channels for leakages out of the neuronal axons.
Therefore, in this scenario, he neuron will return to its resting membrane potential state which between values -50 to -75mV.
Therefore the value of the potential will be -60mV, or within the range of -50 to -60mV. This is because the neuron is is non- excitable.
Explanation:
♛┈⛧┈┈•༶༶•┈┈⛧┈♛♛┈⛧┈┈•༶༶•┈┈⛧┈♛
Answer:
The correct answer is statement d.
Explanation:
In oxidative phosphorylation that takes place in mitochondria, the uncouplers prevent the coupling in between the phosphorylation reactions and electron transport, and therefore, prevent the synthesis of ATP without influencing the ATP synthase and respiratory chain.
The uncoupler always exhibits its influence on the synthesis of ATP. The 2,4-dinitrophenol functions as an uncoupler at the time of oxidative phosphorylation. The NADPH and FAD functions as an electron carrier.
I think the answer for Q2 is D but i could be wrong. sorry if i am
✧・゚: *✧・゚:* *:・゚✧*:・゚✧
Hello!
✧・゚: *✧・゚:* *:・゚✧*:・゚✧
❖ The homologous chromosomes (sister chromatids) move to opposite poles of the cell. The sister chromatids are pulled to opposite poles by spindle fibers.
~ ʜᴏᴘᴇ ᴛʜɪꜱ ʜᴇʟᴘꜱ! :) ♡
~ ᴄʟᴏᴜᴛᴀɴꜱᴡᴇʀꜱ