For an uniformly accelerated motion, we can write

where

is the acceleration of this motion, which in this problem is the gravitational acceleration, with a negative sign because it points downward, against the direction of the motion; h=0.540 m is the distance covered by the flea, and

is the initial velocity.
At the maximum height, the velocity is zero, so

. Therefore we can solve to find

:
We are given the gravitational potential energy and the height of the ball and is asked in the problem to determine the mass of the ball. the formula to be followed is PE = mgh where g is the gravitational acceleration equal to 9.81 m/s^2. substituting, 58.8 J = m*9.8 m/s^2 * 30 m; m = 0.2 kg.
A standing wave is the result of a reflection.
<h2>
Answer:7.14
,4.125
</h2>
Explanation:
Whenever an object is moving in a 2D frame,its motion can be analysed as if it is travelling in two independent 1D frames.
One of such independent 1D frames are along horizontal and another along vertical.
Let
be the total velocity.
Given that,
We call the horizontal velocity as
and the vertical velocity as
.
=

where
is the angle between the object and horizontal.
It is given that 

