Answer:
3,4,5,6,7,8,9,10
3. lithium
4. beryllium
5. boron
6. carbon
7. nitrogen
8. oxygen
9. fluorine
10. neon
those are the numbers in period 2 on the periodic table.
Explanation:
<u>Answer</u>
D) 3100 Liters
<u>Explanation</u>
To get the volume if the balloon you need to use the combined equation of the low of gases.
P₁V₁/T₁ = P₂V₂/T₂
(20×150)/(27+273) = (1×V₂)/(37+273)
3000/300 = V₂/310
10 = V₂/310
V₂ = 10 × 310
= 3100 Liters
To solve this problem we will apply the definition of the ideal gas equation, where we will clear the density variable. In turn, the specific volume is the inverse of the density, so once the first term has been completed, we will simply proceed to divide it by 1. According to the definition of 1 atmosphere, this is equivalent in the English system to

The ideal gas equation said us that,
PV = nRT
Here,
P = pressure
V = Volume
R = Gas ideal constant
T = Temperature
n = Amount of substance (at this case the mass)
Then

The amount of substance per volume is the density, then

Replacing with our values,


Finally the specific volume would be

