Answer:
Explanation:
Height of building
H = 6m
Horizontal speed of first balloon
U1x = 2m/s
Second ballot is thrown straight downward at a speed of
U2y = 2m/s
Time each gallon hits the ground
Balloon 1.
Using equation of free fall
H = Uoy•t + ½gt²
Uox = 0 since the body does not have vertical component of velocity
6 = ½ × 9.8t²
6 = 4.9t²
t² = 6 / 4.9
t² = 1.224
t = √1.224
t = 1.11 seconds
For second balloon
H = Uoy•t + ½gt²
6 = 2t + ½ × 9.8t²
6 = 2t + 4.9t²
4.9t² + 2t —6 = 0
Using formula method to solve the quadratic equation
Check attachment
From the solution we see that,
t = 0.9211 and t = -1.329
We will discard the negative value of time since time can't be negative here
So the second balloon get to the ground after t ≈ 0.92 seconds
Conclusion
The water ballon that was thrown straight down at 2.00 m/s hits the ground first by 1.11 s - 0.92s = 0.19 s.
Answer:
a = 7.5 m / s²
Explanation:
For this exercise let's use Newton's second law, let's create a coordinate system with the x axis parallel to the plane and the y axis perpendicular to the plane
Y axis
N - W cos θ = 0
N = mg cos θ
X axis
W sin θ = m a
mg sin θ = m a
a = g sin θ
let's calculate
a = 9.8 cos 40
a = 7.5 m / s²
Answer:
Explanation:
All the displacement will be converted into vector, considering east as x axis and north as y axis.
5.3 km north
D = 5.3 j
8.3 km at 50 degree north of east
D₁= 8.3 cos 50 i + 8.3 sin 50 j.
= 5.33 i + 6.36 j
Let D₂ be the displacement which when added to D₁ gives the required displacement D
D₁ + D₂ = D
5.33 i + 6.36 j + D₂ = 5.3 j
D₂ = 5.3 j - 5.33i - 6.36j
= - 5.33i - 1.06 j
magnitude of D₂
D₂²= 5.33² + 1.06²
D₂ = 5.43 km
Angle θ
Tanθ = 1.06 / 5.33
= 0.1988
θ =11.25 ° south of due west.
Answer:
because the mass of the apple is very less compared to the mass of earth. Due to less mass the apple cannot produce noticable acceleration in the earth but the earth which has more mass produces noticable acceleration in the apple. thus we can see apple falling on towards the earth but we cannot see earth moving towards the apple.
Answer:
Mg will replace Ag in a compound
Explanation:
A single replacement reaction is driven by the position of ions on the activity series.
As a rule of thumb, the position of metal ions on the activity series determines their reactivity.
Metal ions that are above another are more reactive and they will displace those that are lower.
Generally, activity increases as we go up the group.
Mg ions are higher than Ag ions on the series so, Mg will displace Ag from a solution.