Answer:
The value is 
Explanation:
From the question we are told that
The concentration of
is 
The solubility product constant for
is 
The stability constant for
is 
Generally the dissociation reaction for NiS is
Generally the formation reaction for
is

Combining both reaction we have

Gnerally the equilibrium constant for this reaction is

=>
=> 
Generally the I C E table for the above reaction is

initial [ I] 0.091 0 0
Change [C] -4x +x + x
Equilibrium [E ] 0.091 - 4x x x
Here is x is the amount in term of concentration that is lost by
and gained by
and 
Gnerally the equilibrium constant for this reaction is mathematically represented as
![K_c = \frac{[Ni (CN)_4^{2-} ] [S^{2-} ] }{ [CN^{-}]^4}](https://tex.z-dn.net/?f=K_c%20%20%3D%20%20%5Cfrac%7B%5BNi%20%28CN%29_4%5E%7B2-%7D%20%5D%20%5BS%5E%7B2-%7D%20%5D%20%7D%7B%20%5BCN%5E%7B-%7D%5D%5E4%7D)
=> ![3.0*10^{12} = \frac{x * x}{ [0.091 - 4x ]^4}](https://tex.z-dn.net/?f=3.0%2A10%5E%7B12%7D%20%3D%20%20%5Cfrac%7Bx%20%2A%20%20x%7D%7B%20%5B0.091%20-%204x%20%5D%5E4%7D)
=> ![3.0*10^{12}* [0.091 - 4x ]^4 = x^2](https://tex.z-dn.net/?f=3.0%2A10%5E%7B12%7D%2A%20%20%5B0.091%20-%204x%20%5D%5E4%20%3D%20x%5E2)
=> ![[0.091 - 4x ]^4 = \frac{x^2}{3.0*10^{12}}](https://tex.z-dn.net/?f=%5B0.091%20-%204x%20%5D%5E4%20%3D%20%20%5Cfrac%7Bx%5E2%7D%7B3.0%2A10%5E%7B12%7D%7D)
=> ![[0.091 - 4x ] = \sqrt[4]{ \frac{x^2}{3.0*10^{12}}}](https://tex.z-dn.net/?f=%5B0.091%20-%204x%20%5D%20%3D%20%5Csqrt%5B4%5D%7B%20%5Cfrac%7Bx%5E2%7D%7B3.0%2A10%5E%7B12%7D%7D%7D)
=> ![[0.091 - 4x ] = \frac{\sqrt{x} }{1316}](https://tex.z-dn.net/?f=%5B0.091%20-%204x%20%5D%20%3D%20%5Cfrac%7B%5Csqrt%7Bx%7D%20%7D%7B1316%7D)
=> 
Square both sides

=> 
=> 
Solving using quadratic equation
The value of x is 
Hence the amount in terms of molarity (concentration) of
and
produced at equilibrium is
it then means that the amount of NiS (nickel(II) sulfide) lost at equilibrium is 
So the molar solubility of nickel(II) sulfide at equilibrium is

<span>When a sound wave reaches near the ear, the outer part of the ear acts like if its a funnel, so it catches the wave and funnels it into the ear. They the wave hits the eardrum. Then the bones in the eardrum cause each other to vibrate. Then they are sensed by nerves and sends signals to the brain to interpret sound. Hope This Helps!</span>
Answer:
Mass stays the same because no matter is created or destroyed.
Explanation:
Regardless of what chemical reaction we have, in each case the law of mass conservation applies. The law of mass conservation states that the total mass of a reaction mixture is kept constant, as mass cannot be created or destroyed.
In this specific reaction, the total mass of the reactants should be equal to the total mass of the products when the reaction is complete.
In other words, if we add the mass of hydrogen to the mass of nitrogen, when the reaction is compete, assuming no reagent in excess, this should be equal to the mass of ammonia formed.
RbOH is a strong base that dissociates completely and HCl is a strong acid that too dissociates completely. the complete reaction between the acid and base is;
RbOH + HCl ---> RbCl + H₂O
stoichiometry of acid to base is 1:1
At neutralisation point
H⁺ mol = OH⁻ mol
mol = molarity x volume
if Ma - molarity of acid and Va - volume of acid reacted
Mb - molarity of base and Vb - volume of base reacted
Ma x Va = Mb x Vb
0.5 M x 52.8 mL = Mb x 60.0 mL
Mb = 0.44 M
molarity of base - 0.44 M