When an object is moving with uniform circular motion, the centripetal acceleration of the object d. is directed toward the center of motion.
<span>closing the switch completes the circuit</span>
Answer:
the work done by the 30N force is 4156.92 J.
For this problem, they don´t ask you to determine the work of the total force applied in the block. They only want the work done for the force of 30N, with an angle of 30º respectively of the displacement and a traveled distance of 160m. So:
W=F·s·cos(α)=30N·160m·cos(30º)=4156.92J
To solve the problem it is necessary to apply the concepts related to the voltage in a coil, through the percentage relationship that exists between the voltage and the number of turns it has.
So things our data are given by



PART A) Since it is a system in equilibrium the relationship between the two transformers would be given by

So the voltage for transformer 2 would be given by,

PART B) To express the number value we proceed to replace with the previously given values, that is to say



Answer:

Explanation:
The electrostatic attraction between the nucleus and the electron is given by:
(1)
where
k is the Coulomb's constant
Ze is the charge of the nucleus
e is the charge of the electron
r is the distance between the electron and the nucleus
This electrostatic attraction provides the centripetal force that keeps the electron in circular motion, which is given by:
(2)
where
m is the mass of the electron
v is the speed of the electron
Combining the two equations (1) and (2), we find

And solving for v, we find an expression for the speed of the electron:
