Answer:
Place the north pole of a magnet next to the north pole of another magnet.
Explanation:
Looking at the comments, we can see that the options are:
Place the south pole of a magnet next to the north pole of another magnet.
Place the north pole of a magnet next to the north pole of another magnet.
First, we know that a positively charged particle will repel another positively charged particle.
The same thing happens for magnetic forces (usually we define a magnetic flow from the south pole to the north pole, so we can define the south pole as the "positive" and the north pole as the "negative", but this is only notation and do not really matter), a south pole of a magnet will repel another south pole of a magnet (and the same happens for the north poles)
Then the correct option is:
Place the north pole of a magnet next to the north pole of another magnet.
Answer:
d. 6.0 m
Explanation:
Given;
initial velocity of the car, u = 7.0 m/s
distance traveled by the car, d = 1.5 m
Assuming the car to be decelerating at a constant rate when the brakes were applied;
v² = u² + 2(-a)s
v² = u² - 2as
where;
v is the final velocity of the car when it stops
0 = u² - 2as
2as = u²
a = u² / 2s
a = (7)² / (2 x 1.5)
a = 16.333 m/s
When the velocity is 14 m/s
v² = u² - 2as
0 = u² - 2as
2as = u²
s = u² / 2a
s = (14)² / (2 x 16.333)
s = 6.0 m
Therefore, If the car had been moving at 14 m/s, it would have traveled 6.0 m before stopping.
The correct option is d
I think the answer is:
B) oceanic crust-continental crust
Answer:the first one was x
the second one is y
Explanation: