Answer:
The confidence interval for the population variance of the thicknesses of all aluminum sheets in this factory is Lower limit = 2.30, Upper limit = 4.83.
Step-by-step explanation:
The confidence interval for population variance is given as below:
![[(n - 1)\times S^{2} / X^{2} \alpha/2, n-1 ] < \alpha < [(n- 1)\times S^{2} / X^{2} 1- \alpha/2, n- 1 ]](https://tex.z-dn.net/?f=%5B%28n%20-%201%29%5Ctimes%20S%5E%7B2%7D%20%20%2F%20%20X%5E%7B2%7D%20%20%5Calpha%2F2%2C%20n-1%20%5D%20%3C%20%5Calpha%20%3C%20%5B%28n-%201%29%5Ctimes%20S%5E%7B2%7D%20%20%2F%20X%5E%7B2%7D%201-%20%5Calpha%2F2%2C%20n-%201%20%5D)
We are given
Confidence level = 98%
Sample size = n = 81
Degrees of freedom = n – 1 = 80
Sample Variance = S^2 = 3.23
![X^{2}_{[\alpha/2, n - 1]} = 112.3288\\\X^{2} _{1 -\alpha/2,n- 1} = 53.5401](https://tex.z-dn.net/?f=X%5E%7B2%7D_%7B%5B%5Calpha%2F2%2C%20n%20-%201%5D%7D%20%20%20%3D%20112.3288%5C%5C%5CX%5E%7B2%7D%20_%7B1%20-%5Calpha%2F2%2Cn-%201%7D%20%3D%2053.5401)
(By using chi-square table)
[(n – 1)*S^2 / X^2 α/2, n– 1 ] < σ^2 < [(n – 1)*S^2 / X^2 1 -α/2, n– 1 ]
[(81 – 1)* 3.23 / 112.3288] < σ^2 < [(81 – 1)* 3.23/ 53.5401]
2.3004 < σ^2 < 4.8263
Lower limit = 2.30
Upper limit = 4.83.
Answer:StartFraction 2 over 13 End fraction
Step-by-step explanation:
Probability = number of possible outcomes/ total number of outcomes
P (Yellow marble) = 2/ 13
A
..
Z
Z
Z
Z
Z
Z
Z
Z
A
A
Answer is A
Answer: x = {-1, -3, 2}
<u>Step-by-step explanation:</u>
x³ + 2x² - 5x - 6 = 0
Use the rational root theorem to find the possible roots: ±1, ±2, ±3, ±6
Use Long division, Synthetic division, or plug them into the equation to see which root(s) work <em>(result in a remainder of zero)</em>.
I will use Synthetic division. Let's try x = 1
1 | 1 2 -5 -6
|<u> ↓ 1 3 -2 </u>
1 3 -2 -8 ← remainder ≠ 0 so x = 1 is NOT a root
Let's try x = -1
- 1 | 1 2 -5 -6
|<u> ↓ -1 -1 6 </u>
1 1 -6 0 ← remainder = 0 so x = -1 is a root!
The coefficients of the reduced polynomial are: 1, 1, -6 --> x² + x - 6
Factor: x² + x - 6
(x + 3)(x - 2)
Set those factors equal to zero to solve for x:
x + 3 = 0 --> x = -3
x - 2 = 0 --> x = 2
Using Synthetic Division and Factoring the reduced polynomial, we found
x = -1, -3, and 2