Answer:
polar orbit is one in which a satellite passes above or nearly above both poles of the body being orbited (usually a planet such as the Earth, but possibly another body such as the Moon or Sun) on each revolution. It has an inclination of about 60 - 90 degrees to the body's equator.[1] A satellite in a polar orbit will pass over the equator at a different longitude on each of its orbits.
Launching satellites into polar orbit requires a larger launch vehicle to launch a given payload to a given altitude than for a near-equatorial orbit at the same altitude, due to the fact that much less of the Earth's rotational velocity can be taken advantage of to achieve orbit. Depending on the location of the launch site and the inclination of the polar orbit, the launch vehicle may lose up to 460 m/s of Delta-v, approximately 5% of the Delta-v required to attain Low Earth orbit. Polar orbits are a subtype of Low Earth orbits with altitudes between 200 and 1,000 kilometers.[1]
Explanation:
Answer:
Basically, all phosphates except Sodium phosphates, Potassium phosphates and Ammonium phosphates are insoluble in water. That, of course, includes Magnesium phosphate.
Explanation:
Hope this helped!
According to Gayle Lusac's law, pressure is proportional to absolute temperature of a gas. Thus:
P/T = constant
So if the temperature becomes 3T, the pressure would increase to 3P
Explanation:
The shapes and relative energies of the orbitals s,p,d and f orbitals are given by the principal quantum number and the azimuthal quantum number.
The principal quantum number gives the main energy level and the azimuthal quantum number denotes the shape of the orbitals.
- For the principal quantum number, they represent the energy levels in which the orbital is located or the average distance of the orbital from the nucleus. It takes the number n = 1,2,3,4,5,6,7......
- The azimuthal quantum number(L) shows the shape of the orbitals in subshells accommodating electrons. The number of possible shapes is limited by the the principal quantum number.
L Name of orbital shape of orbital
0 s spherical
1 p dumb-bell
2 d double dumb-bell
3 f complex
Principal Azimuthal Orbital
Quantum Quantum Designation of
Number (N) Number(l) Sublevel
1 0 1s
2 0 2s
1 2p
3 0 3s
1 3p
2 3d
4 0 4s
1 4p
2 4d
3 4f
Learn more:
Atomic orbitals brainly.com/question/9514863
#learnwithBrainly
Answer:
1. It depends what type of method you are using. if it is Height x Width x Length then it will not work for an irregular shape because it has extra pieces that would not be included.
2. The second method would work for both regular and irregular shapes because you would have to know or find out the volume of the regular shape to get the volume for the irregular shape.
3. It also depends on what you are doing, if you are doing a regular shape then use the first method, if it's an irregular shape then use the second method, if you do the maths correctly both should give you an accurate answer for what you want to achieve.
4. No, because the sugar would dissolve.
5. No, on this case the displacement method would not work because of the weight difference
Explanation:
All the answers for you!