Answer:
The density of the box is 6.25g/cm³
Explanation:
400 ÷ 4³ = 6.25
<u>Answer:</u>
<em>Atomic number 75 is dedicated to an element named rhenium and has been given Re as its chemical name.</em>
<u>Explanation:</u>
With a really low concentration it is one of the rarest metals that is found in Earth's crust.
Like all other elements rhenium also has certain isotopes among with 185 and 187 are the most stable ones. Hence these two are the ones that are naturally available abundance is 34% and 63% respectively.
Answer:
False
Explanation:
A double covalent bond means 2 atoms or elements are sharing <u>4</u><u> </u><u>e</u><u>l</u><u>e</u><u>c</u><u>t</u><u>r</u><u>o</u><u>n</u><u>s</u>.
*single covalent bond shares 2 electrons.
The ground-state electron configurations of
transition metal ions are diamagnetic [Kr]
. The ion is diamagnetic because there all electrons are paired.
<h3>
What is Diamagnetic?</h3>
- A magnetic field repels diamagnetic materials because it induces an opposing magnetic field in them when it is applied, which produces a repelling force.
- In contrast, a magnetic field draws paramagnetic and ferromagnetic materials together.
- All materials experience the quantum mechanical phenomenon known as diamagnetism, which is the only source of magnetism in a material.
- The magnetic dipoles within paramagnetic and ferromagnetic materials exert an attracting force that outweighs the modest diamagnetic force.
- Diamagnetic materials have a magnetic permeability that is less than vacuum, or 0.
- Although superconductors behave as strong diamagnets, diamagnetism is often a modest effect that can only be observed by sophisticated laboratory equipment.
To learn more about Diamagnetic with the given link
brainly.com/question/15462756
#SPJ4
Answer:
The volume of CO2 produced is 6.0 L (option D)
Explanation:
Step 1: Data given
Volume of oxygen = 3.0 L
Carbon monoxide = CO = in excess
Step 2: The balanced equation
2 CO (g) + O2 (g) → 2 CO2 (g)
Step 3: Calculate moles of O2
1 mol of gas at STP = 22.4 L
3.0 L = 0.134 moles
Step 3: Calculate moles of CO2
For 2 moles CO we need 1 mol of O2 to produce 2 moles of CO2
For 0.134 moles O2 we'll have 2*0.134 = 0.268 moles CO2
Step 4: Calculate volume of CO2
1 mol = 22.4 L
0.268 mol = 22.4 * 0.268 = 6.0 L
The volume of CO2 produced is 6.0 L