Answer:
Reactants break bonds with consuming the energy and form the new bonds .
Explanation:
As the two molecules interacted with each other , the elements reshuffled the bonds and formed the new ones with shifting the energy and converting it into new products .
Sr N(e⁻)=38
Sr²⁺ N(e⁻)=38-2=36
36e⁻
In 1869, just five years after John Newlands put forward his law of octaves, a Russian chemist called Dmitri Mendeleev published a periodic table. Mendeleev also arranged the elements known at the time in order of relative atomic mass, but he did some other things that made his table much more successful.
i hope this helps in some way!
The methane molecule in the stratosphere has a higher potential energy than the CH₃ molecule and the hydrogen atom formed from breaking one of the carbon‐hydrogen bonds in a CH₄ molecule.
The complete question is:
<em>For each of the following situations, you are asked which of two objects or substances has the higher energy. Explain your answer with reference to the capacity of each to do work and say whether the energy that distinguishes them is kinetic energy or potential energy.</em>
<em>a. (1) A methane molecule, CH4, in the stratosphere or (2) a CH3 molecule and a hydrogen atom formed from breaking one of the carbon-hydrogen bonds in a CH4 molecule.</em>
<h3>Which have a higher energy?</h3>
The methane molecule in the stratosphere is a stable molecule and possesses chemical potential energy.
The CH₃ molecule and the hydrogen atom formed from breaking one of the carbon‐hydrogen bonds in a CH₄ molecule are unstable molecules and possesses kinetic energy. However, some of their energy has been used in breaking the bond.
Thus, the methane molecule in the stratosphere has a higher potential energy than the CH₃ molecule and the hydrogen atom formed from breaking one of the carbon‐hydrogen bonds in a CH₄ molecule.
In conclusion, the energy in the methane molecule is higher.
Learn more about potential energy at: brainly.com/question/14427111
#SPJ1
Answer:
Each element within a group has similar physical or chemical properties because of its atom's outermost electron shell (most chemical properties are dominated by the orbital location of the outermost electron).
Explanation: