1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
OLEGan [10]
3 years ago
15

two bowling balls each have a mass of 8kg. if they are 2 m apart, what is the gravitational force between them?

Physics
1 answer:
Scilla [17]3 years ago
4 0

Answer:

1 x 10^-9 N

Explanation:

F = Gm²/d² = 6.674e-11(8²)/2² = 1.06784e-9

You might be interested in
Gabriel is performing an experiment in which he is measuring the energy and work being done by a ball rolling down a hill.Which
Rufina [12.5K]
I think this one's B. energy and work are both measured in joules.
7 0
3 years ago
Read 2 more answers
5. Describe the shape of the waveform in the secondary coil for a sine, square and triangle wave in the primary coil. How does t
Volgvan

Answer:

When primary coil is exited by sin wave,this will result in sin wave in secondary coil as well.According to law,flux induced in the secondary coil will have same waveform as in the primary coil.

5 0
4 years ago
A solid sphere of weight 42.0 N rolls up an incline at an angle of 36.0°. At the bottom of the incline the center of mass of the
Alecsey [184]

Answer:

Part a)

KE = 77.95 J

Part b)

L = 3.16 m

Part c)

distance L is independent of the mass of the sphere

Explanation:

Part a)

As we know that rotational kinetic energy of the sphere is given as

KE = \frac{1}{2}I\omega_2 + \frac{1}{2}mv^2

so we will have

KE = \frac{1}{2}(\frac{2}{5}mR^2)(\frac{v}{R})^2 + \frac{1}{2}mv^2

so we will have

KE = \frac{1}{5} mv^2 + \frac{1}{2}mv^2

KE = \frac{7}{10} mv^2

KE = \frac{7}{10}(\frac{42}{9.81})(5.10^2)

KE = 77.95 J

Part b)

By mechanical energy conservation law we know that

Work done against gravity = initial kinetic energy of the sphere

So we will have

mgLsin\theta = KE

\frac{42}{9.81}(9.81)L sin36 = 77.95

L = 3.16 m

Part c)

by equation of energy conservation we know that

\frac{7}{10}mv^2 = mgL sin\theta

so here we can see that distance L is independent of the mass of the sphere

7 0
3 years ago
A motorcycle accelerates uniformly from rest at 7.9\,\dfrac{\text{m}}{\text{s}^2}7.9 s 2 m ​ 7, point, 9, space, start fraction,
8090 [49]

Answer:

t = 3.516 s

Explanation:

The most useful kinematic formula would be the velocity of the motorcylce as a function of time, which is:

v(t) = v_0 +at

Where v_0 is the initial velocity and a is the acceleration. However the problem states that the motorcyle start at rest therefore v_0 = 0

If we want to know the time it takes to achieve that speed, we first need to convert units from km/h to m/s.

This can be done knowing that

1 km = 1000 m

1 h = 3600 s

Therefore

1 km/h = (1000/3600) m/s = 0.2777... m/s

100 km/h = 27.777... m/s

Now we are looking for the time t, for which v(t) = 27.77 m/s. That is:

27.777 m/s = 7.9 m/s^2 t

Solving for t

t = (27.7777 / 7.9) s = 3.516 s

6 0
4 years ago
A person with mass mp = 76 kg stands on a spinning platform disk with a radius of R = 1.98 m and mass md = 191 kg. The disk is i
nalin [4]
<span>1.7 rad/s The key thing here is conservation of angular momentum. The system as a whole will retain the same angular momentum. The initial velocity is 1.7 rad/s. As the person walks closer to the center of the spinning disk, the speed will increase. But I'm not going to bother calculating by how much. Just remember the speed will increase. And then as the person walks back out to the rim to the same distance that the person originally started, the speed will decrease. But during the entire walk, the total angular momentum remained constant. And since the initial mass distribution matches the final mass distribution, the final angular speed will match the initial angular speed.</span>
3 0
4 years ago
Other questions:
  • When Edmund Halley visited Newton to ask him about orbits, what shape did Newton tell him orbits must have ?
    13·1 answer
  • Scientists can organize their obervations using
    15·1 answer
  • Balancing Chemical Equations
    5·2 answers
  • Students are given some resistors with various resistances a battery with internal resistance
    5·2 answers
  • A circular disk of radius 10 cm has a constant angular acceleration of 1.0 rad/s2 ; at t = 0 its angular velocity is 2.0 rad/s.
    14·1 answer
  • The three osicles known as the hammer, anvil and stirrup __________.
    11·1 answer
  • A solid ball has a radius of 2cm and a length of 7cm. It has a density of 3.1g/cm3
    13·1 answer
  • Assume that 10 waves pass a fixed point in 5 seconds. What is the frequency of the waves in hertz?
    8·1 answer
  • A closed, rigid container holding 0.2 moles of a monatomic ideal gas is placed over a Bunsen burner and heated slowly, starting
    12·1 answer
  • Can someone please help me out
    10·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!