Lithium is in the Alkali Metal group or 1A column. The atoms in this group form ions with a 1+ charge. Lithium ion’s charge is 1+.
Answer:
The correct answer is: X is nitrogen dioxide, and Y is a metal oxide
Explanation:
Combustion of compound of containing nitrogen and metal will give nitrogen dioxide and metal oxide as product. During combustion reaction a compound reacts with oxygen in order to yield oxides of elements present in the compound.
The general equation is given as:

Hence, the correct answer is :X is nitrogen dioxide, and Y is a metal oxide.
Answer:
The rate at which the solute dissolves will increase.
Explanation:
If a solution is stirred, the rate at which a solute dissolves would increase substantially provided the solution is not yet saturated.
Stiring would cause more of the solution to come in contact with every part of the solute. It will increase the surface area of contact for the solution to act which will shoot up the rate of reaction. Stiring helps to bring solutes in solutions into a more close contact with the molecules or compounds of the medium.
Thomson's atomic model is a theory about the atomic structure proposed in 1904 by Thomson, who discovered the electron in 1897, a few years before the discovery of the proton and the neutron.
Hope this helps :))
Answer:
Buffer B has the highest buffer capacity.
Buffer C has the lowest buffer capacity.
Explanation:
An effective weak acid-conjugate base buffer should have pH equal to
of the weak acid. For buffers with the same pH, higher the concentrations of the components in a buffer, higher will the buffer capacity.
Acetic acid is a weak acid and
is the conjugate base So, all the given buffers are weak acid-conjugate base buffers. The pH of these buffers are expressed as (Henderson-Hasselbalch):
![pH=pK_{a}(CH_{3}COOH)+log\frac{[CH_{3}COO^{-}]}{[CH_{3}COOH]}](https://tex.z-dn.net/?f=pH%3DpK_%7Ba%7D%28CH_%7B3%7DCOOH%29%2Blog%5Cfrac%7B%5BCH_%7B3%7DCOO%5E%7B-%7D%5D%7D%7B%5BCH_%7B3%7DCOOH%5D%7D)

Buffer A: 
Buffer B: 
Buffer C: 
So, both buffer A and buffer B has same pH value which is also equal to
. Buffer B has higher concentrations of the components as compared to buffer A, Hence, buffer B has the highest buffer capacity.
The pH of buffer C is far away from
. Therefore, buffer C has the lowest buffer capacity.