Intensity has no affect on whether or not the photoelectric effect occurs. The determining property is frequency and since frequency and wavelength are inversely proportional, wavelength matters as well. If a frequency of light can't cause the photoelectric effect to happen, no matter what the intensity is, the light can't make it happen.
I hope this helps. Let me know in the comments if anything is unclear.
Remark
The given thing on the right is a positron. The mass for these subatomic particles is considered to be 0. It's atomic number is 1 which means it is a blood relative of a proton.
So essentially what happens is that X is one space to the left on the periodic table. But let's solve this a little bit more formally.
Solution
y stays the same at 147. It is z that changes.
65 = z + 1 Subtract 1 from both sides.
64 = z
So the chemical with 64 as its position on the periodic table is
Gadolinium and the answer is C
A
Is the correct answer
I’m 95% sure