Answer:

Explanation:
Hello,
The six-carbon benzene ring contains two types of bonds: C-C and C-H bonds, that are
-hybridized σ bonds, and the six π bonds that form the aromatic ring. The σ bonds form from one
orbital and two
orbitals from each carbon, which then bond the carbon to the two carbons on either side and the carbon's single hydrogen. The remaining
orbital from each carbon atom sticks out above and below the plane of the ring; these
orbitals overlap sideways, rather than lengthwise, to form the aromatic π bond system.
Best regards.
The electron, due to the way an electron orbits the nucleus of an atom.
According to Quantum Mechanics, electrons do not really orbit the nucleus of an atom. In fact, the most tightly bound state, the 1s orbital, has no angular momentum at all. This would be the state with the most "kinetic energy" and yet there is no "orbital" motion at all in this state.
<span>The balance format is
4NH3+ 5O2 -------> 4NO + 6H2O </span>
The rate constant : k = 9.2 x 10⁻³ s⁻¹
The half life : t1/2 = 75.3 s
<h3>Further explanation</h3>
Given
Reaction 45% complete in 65 s
Required
The rate constant and the half life
Solution
For first order ln[A]=−kt+ln[A]o
45% complete, 55% remains
A = 0.55
Ao = 1
Input the value :
ln A = -kt + ln Ao
ln 0.55 = -k.65 + ln 1
-0.598=-k.65
k = 9.2 x 10⁻³ s⁻¹
The half life :
t1/2 = (ln 2) / k
t1/2 = 0.693 : 9.2 x 10⁻³
t1/2 = 75.3 s
Answer:
0.212
Explanation:
(5.30g) / (5.30g + 19.7g)