Action-reaction pairs.
This is in reference to Newton’s second law of motion.
Incomplete question as number of moles and length is missing.So I have assumed 3 moles and length of 0.300 m.So the complete question is here:
Three moles of an ideal gas are in a rigid cubical box with sides of length 0.300 m.What is the force that the gas exerts on each of the six sides of the box when the gas temperature is 20.0∘C?
Answer:
The Force act on each side is 2.43×10⁴N
Explanation:
Given data
n=3 mol
L=0.3 m
Temperature=20.0°C=293 K
To find
Force F
Solution
To get force act on each side it would employ by
F=P.A
Where P is pressure
A is Area
First we need to find pressure by applying ideal gas law
So

So The Force is given as:

The Force act on each side is 2.43×10⁴N
Answer:
I = Io 10^{β/10}
Explanation:
To find a formula for the intensity of sound waves you use the fact that there is a great range of intensity that human can perceive.
The use of logarithms are useful for this kind of systems. For example, if you want a 10 scale for the measurement of the sound level you can write:
(1)
I: intensity of sound
Io: hearing threshold
From the equation (1) you can find I in terms of Io and β. You use properties of the logarithms to obtain:

No electron with a de Broglie wavelength of 2 μm can not pass through a slit that is 1 μm wide
When studying quantum mechanics, the de Broglie wavelength is a key idea. De Broglie wavelength is the wavelength () that is connected to an item in relation to its momentum and mass. Typically, a particle's force is inversely proportional to its de Broglie wavelength.
Where "h" is the Plank constant, momentum has the formula = h m v = h. The de Broglie equation and de Broglie wavelength are terms used to describe the relationship between a particle's momentum and wavelength. The probability density of locating an object at a specific location in the configuration space is determined by the De Broglie wavelength, which is a wavelength present in all quantum mechanical objects. A particle's momentum and de Broglie wavelength are inversely related.
To learn more about de Broglie wavelength please visit-
brainly.com/question/17295250
#SPJ4