Of the following...?? Is there more to this question? :)
Answer:
a)
, b) 
Explanation:
a) The Hooke's law states that spring force is directly proportional to change in length. That is to say:

In this case, the force is equal to the weight of the object:



The spring constant is:



b) The length of the spring is:




Answer: independent variable: Size of the feather.
Explanation:
In an experiment, the manipulated/independent variable is, as the name implies, the variable that the scientist can control.
In this case, the scientist has only one variable that he can control at will, and this is the size of the feather (he can choose which feather he uses for the experiment)
So the manipulated variable will be the size of the feather.
And the dependent variable is the one that "answers" to the changes in the manipulated variable.
In this case, will be the time that it takes to the feather to fall to the ground.
Answer:
a) The distance of spectator A to the player is 79.2 m
b) The distance of spectator B to the player is 43.9 m
c) The distance between the two spectators is 90.6 m
Explanation:
a) Knowing the time it takes the sound to reach both spectators, we can calculate their position relative to the player, using this equation:
x = v * t
where:
x = position of the spectators
v = speed of sound
t = time
Then, the position for spectator A relative to the player is:
x = 343 m/s * 0.231 s = 79.2 m
b)For spectator B:
x = 343 m/s * 0.128 s
x = 43.9 m
The distance of spectator A and B to the player is 79.2 m and 43.9 m respectively.
c) To calculate the distance between the spectators, please see the attached figure. Notice that the distance between the spectators is the hypotenuse of the triangle formed by the sightline of both. We already know the longitude of the two sides. Then, using Pythagoras theorem:
(Distance AB)² = A² + B²
(Distance AB)² = (79.2 m)² + (43.9 m)²
Distance AB = 90. 6 m
Answer:
The heat capacity of a sample is 37.7 J/K.
Explanation:
Given that,
Submerged temperature of tissue sample = 275 K
Mass of liquid nitrogen= 2 kg
Temperature = 70 K
Final temperature = 75 K
We need to calculate the heat
Using formula of heat

Put the value into the formula


We need to calculate the heat capacity of a sample
Using formula of heat capacity

Put the value into the formula


Hence, The heat capacity of a sample is 37.7 J/K.