Explanation:
Molar mass of Cu = 63.5g/mol
Moles of Cu
= 5.8g / (63.5g/mol) = 0.091mol (B)
Answer:
The mass of coke needed to react completely with 1.0 ton of copper(II) oxide is 0.794 Ton.
Explanation:

1 Ton = 907185 grams
Mass of copper oxide = 1.0 Ton = 907185 grams
Moles of copper oxide =
According to reaction, 2 moles of copper oxide reacts with 1 mole of carbon.
Then 11403.95 moles of copper oxide will react with:
of carbon
Mass of 5,701.98 moles of carbon:

Mass of coke = x
Mass of carbon = 68,423.75 g
Percentage of carbon in coke = 95%


The mass of coke needed to react completely with 1.0 ton of copper(II) oxide is 0.794 Ton.
Answer:
3. 3.45×10¯¹⁸ J.
4. 1.25×10¹⁵ Hz.
Explanation:
3. Determination of the energy of the photon.
Frequency (v) = 5.2×10¹⁵ Hz
Planck's constant (h) = 6.626×10¯³⁴ Js
Energy (E) =?
The energy of the photon can be obtained by using the following formula:
E = hv
E = 6.626×10¯³⁴ × 5.2×10¹⁵
E = 3.45×10¯¹⁸ J
Thus, the energy of the photon is 3.45×10¯¹⁸ J
4. Determination of the frequency of the radiation.
Wavelength (λ) = 2.4×10¯⁵ cm
Velocity (c) = 3×10⁸ m/s
Frequency (v) =?
Next, we shall convert 2.4×10¯⁵ cm to metre (m). This can be obtained as follow:
100 cm = 1 m
Therefore,
2.4×10¯⁵ cm = 2.4×10¯⁵ cm × 1 m /100 cm
2.4×10¯⁵ cm = 2.4×10¯⁷ m
Thus, 2.4×10¯⁵ cm is equivalent to 2.4×10¯⁷ m
Finally, we shall determine the frequency of the radiation by using the following formula as illustrated below:
Wavelength (λ) = 2.4×10¯⁷ m
Velocity (c) = 3×10⁸ m/s
Frequency (v) =?
v = c / λ
v = 3×10⁸ / 2.4×10¯⁷
v = 1.25×10¹⁵ Hz
Thus, the frequency of the radiation is 1.25×10¹⁵ Hz.
The chemical reaction would be:
C3H8 + 5O2 = 3CO2 + 4H2O
For this case, we assume that gas is ideal thus in every 1 mol the volume would be 22.41 L. We calculate as follows:
28.7 L C3H8 ( 1 mol / 22.41 L ) ( 4 mol H2O / 1 mol C3H8 ) ( 18.02 g / mol ) = 92.31 g H2O produced
Hope this answers the question.
STP is the abbreviation of standard condition for temperature and pressure which is 273.15K temperature and 1.013× 10^5 Pa pressure. Since the pressure and temperature changes, I assume the question would ask about the result of the volume. The temperature used in ideal gas should be Kelvin, so 27 Celcius would be 300.15K.
The calculation would be
PV=T
V=T/P
V2/V1= T2*P1/T1*P2
V2/V1=273.15K* 90^10^3Pa/ 300.15K * 1.013× 10^5 Pa
V2= 0.81904 * 51.7ml
V2= 42.34ml