The ratio of the turns to the voltage should be equal
i.e: 200/120 = t/12
so the secondary coil should have 20 turns
<span>I'll tell you how to do it but you must crunch the numbers.
Use Kepler's 3rd Law
T^2 = k R^3
where k = 4(pi)^2/ GM
G =gravitational constant = 6.67300 × 10-11 m3 kg-1 s-2
M = mass of this new planet
pi = 3.14159265
T =3.09 days = 266976 seconds
R = (579,000,000km)/9 = 64333333.3 km
a)
Solve Kepler's 3rd Law for M. Your answer will be in kg
b)
mass of the sun = 1.98892 × 10^30 kilograms
Form the ratio
M(planet)/M(sun) </span>
Answer:
The frequency of the wheel is the number of revolutions per second:
f= \frac{N_{rev}}{t}= \frac{10}{1 s}=10 Hz
And now we can calculate the angular speed, which is given by:
\omega = 2 \pi f=2 \pi (10 Hz)=62.8 rad/s in the clockwise direction.
Explanation:
To find the speed of the bobsled, you divide the distance by time. So, when you divide 106 by 26, you get 4.07. This means the speed of the bobsled is about 4 miles per hour.