Answer:
0.1066 hours
Explanation:
A common pesticide degrades in a first-order process with a rate constant (k) of 6.5 1/hours. We can calculate its half-life (t1/2), that is, the times that it takes for its concentration to be halved, using the following expression.
t1/2 = ln2/k
t1/2 = ln2/6.5 h⁻¹
t1/2 = 0.1066 h
The half-life of the pesticide is 0.1066 hours.
No.
Electromagnetic waves can travel without a medium.
hope this helps and have a great day :)
16.4 grams is the mass of solute in a 500 mL solution of 0.200 M
.
sodium phosphate
Explanation:
Given data about sodium phosphate
atomic mass of Na3PO4 = 164 grams/mole
volume of the solution = 500 ml or 0.5 litres
molarity of sodium phosphate solution = 0.200 M
The formula for molarity will be used here to know the mass dissolved in the given volume of the solution:
The formula is
molarity = 
putting the values in the equation, we get
molarity x volume = number of moles
0.200 X 0.5= number of moles
number of moles = 0.1 moles
Atomic mass x number of moles = mass
putting the values in the above equation
164 x 0.1 = 16.4 grams
16.4 grams of sodium phosphate is present in 0.5 L of the solution to make a 0.2 M solution.
Energy required=mass*specific heat*temperature change
=10*4.184*57.2
=2393.248j
=2.39*10^3
H2SO.Mgslfurmobile phase in this experiment