Answer:
D) 25 m/s
Explanation:
In order to solve this problem we must use the following kinematics equation.

where:
Vf = final speed [m/s]
Vi = initial speed = 0
a = acceleration = 5[m/s^2]
t = time = 5[s]
After 5 seconds the acceleration is equal to 5 [m/s^2]
Now replacing the values in the equation:
Vf = 0 + (5*5)
Vf = 25[m/s]
Oh ya the correct answer for this is B I think because structure B
Pnet = Po + dgh
<span>Density of saltwater = 1030 kg/m^3. </span>
<span>Disregard the thickness. Assuming it's a circular window, then the area is pi(r^2). </span>
<span>d = 20 cm = 0.2 m </span>
<span>r = d/2 = 0.1 m </span>
<span>A = pi(r^2) </span>
<span>A = 3.14159265(.1^2) </span>
<span>A = 0.0314159265 m^2 </span>
<span>p = F/A </span>
<span>p = (1.1 x 10^6) / (0.0314159265) </span>
<span>p = 35,014,087.5 Pa </span>
<span>1 atm = 101,325 Pa </span>
<span>P = Po + dgh </span>
<span>h = (P - Po) / dg </span>
<span>h = (35,014,087.5 - 101,325) / (1030 x 9.81) </span>
<span>h = 3 455.23812 m </span>
<span>h = 3.5 km</span>
D = distance between th two trains at the start of the motion = 100 miles
V = speed of the faster train towards slower train = 60 mph
v = speed of the slower train towards faster train = 40 mph
t = time taken by the two trains to collide = ?
time taken by the two trains to collide is given as
t = D/(V + v)
t = 100/(60 + 40) = 1 h
v' = speed of the bird = 90 mph
d = distance traveled by the bird
distance traveled by the bird is given as
d = v' t
d = 90 x 1
d = 90 miles
Answer:
This happens in two ways. If an object is at rest and an unbalanced force pushes or pulls the object, it will move. Unbalanced forces can also change the speed or direction of an object that is already in motion.
Explanation: