I would say d but I’m not sure
It is harder to remove an electron from fluorine than from carbon because the size of the nuclear charge in fluorine is larger than that of carbon.
The energy required to remove an electron from an atom is called ionization energy.
The ionization energy largely depends on the size of the nuclear charge. The larger the size of the nuclear charge, the higher the ionization energy because it will be more difficult to remove an electron from the atom owing to increased electrostatic attraction between the nucleus and orbital electrons.
Since fluorine has a higher size of the nuclear charge than carbon. More energy is required to remove an electron from fluorine than from carbon leading to the observation that; it is harder to remove an electron from fluorine than from carbon.
Learn more: brainly.com/question/16243729
Answer:
I'll take a gander at your question
Explanation:
If you mean the Earth's crust, your answer is The Mantle.
Na₃PO₄ -----> 3Na(+) + PO₄(3-)
y-y.......................3y...........y
3y = 1.2
y = 0,4M
Na₃PO₄ -----> 3Na(+) + PO₄(3-)
0,4-0,4..............1,2..........0,4
0.........................1,2..........0,4
C = n/V
n = C×V
n = 0,4×0,65L
n = 0,26 mol Na₃PO₄
mNa₃PO₄: (23×3)+31+(16×4) = 164 g/mol
164g ----- 1 mol
Xg -------- 0,26 mol
X = 164×0,26
X = 42,64g Na₂SO₄
The given question tells you that a certain piece of wire has a mass = 2.0 g per meter
That means that if you consider a piece of wire that is 1 m in length, its mass will be equal to 2.00 g .
According to question,
Now, you know that
1 m = 100 cm
Mass of 2.00 g of copper will correspond to a wire that is a 100 cm long.
This implies that 0.28 gof copper will correspond to a wire that is
0.28 g * 100 cm / 2.0 g = 14 cm long
Hence, 14 cm of the wire would be needed to provide 0.28 g of copper.
Properties of Copper :
High conductivity and ductility.
Non magnetic.
To know more about Copper here:
brainly.com/question/19761029?referrer=searchResults
#SPJ4